MImapqtl implements QTL mapping analysis for multiple QTL in
multiple intervals
for a single trait in a single environment. It can begin analysis from an initial model
specifying the positions of QTL, or de novo, that is with no initial model. If given an
initial model, the program will estimate the parameters, refine the estimates of QTL positions within
intervals, test the significance of all parameters, search for more QTL, search for epistatic interactions
and finally calculate the and breeding values for the model. If analysis is initiated de novo,
then there will be a search for QTL, a search for interactions and calculation of
and breeding values.
MImapqtl can also do a single pass search for a new QTL and create a likelihood ratio profile
for a new putative QTL given any initial model.
For putative QTL, the model is
The likelihood function of the data given the model is a mixture of normal distributions
In (3.7), the are the probabilities of the multilocus genotypes conditioned on marker data.
The variable
is the number of genotypic classes for the experimental design: For backcrosses and recombinant inbred lines,
, while for intercrosses it is
. In practice, it is often infeasable to do the
sum over all
multilocus genotypes: We use a subset of the most frequent genotypes. The parameters are in
while the coded indicator variables are in
.
is the normal density function with mean
and variance
. We use an EM (expectation maximization) algorithm to obtain maximum likelihood parameter estimates
[Kao and ZengKao and Zeng1997,Zeng, Kao, and BastenZeng
et al.1999].