next up previous contents index
Next: Index Up: QTL Cartographer Version 1.16 Previous: CONTACT INFO   Contents   Index

Bibliography

AkaikeAkaike1969
Akaike, H. (1969).
Fitting autoregressive models for prediction.
Ann. Institute Stat. Math. 21, 243-247.

Basten, Weir, and ZengBasten et al.1994
Basten, C. J., B. S. Weir, and Z.-B. Zeng (1994).
Zmap-a QTL cartographer.
In C. Smith, J. S. Gavora, B. B. J. Chesnais, W. Fairfull, J. P. Gibson, B. W. Kennedy, and E. B. Burnside (Eds.), Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software, Volume 22, Guelph, Ontario, Canada, pp. 65-66. Organizing Committee, 5th World Congress on Genetics Applied to Livestock Production.

BromanBroman1997
Broman, K. W. (1997).
Identifying quantitative trait loci in experimental crosses.
Ph. D. thesis, UC Berkeley, Department of Statistics.

Carter and FalconerCarter and Falconer1951
Carter, T. C. and D. S. Falconer (1951).
Stocks for detecting linkage in the mouse and the theory of their design.
J. Genet. 50, 307-323.

Churchill and DoergeChurchill and Doerge1994
Churchill, G. A. and R. W. Doerge (1994).
Empirical threshold values for quantitative trait mapping.
Genetics 138, 963-971.

CockerhamCockerham1954
Cockerham, C. C. (1954).
An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present.
Genetics 39, 859-882.

Cockerham and ZengCockerham and Zeng1996
Cockerham, C. C. and Z. Zeng (1996).
Design III with marker loci.
Genetics 143, 1437-1456.

Doerge and ChurchillDoerge and Churchill1996
Doerge, R. W. and G. A. Churchill (1996).
Permutation tests for multiple loci affecting a quantitative character.
Genetics 142, 285-294.

Doerge, Zeng, and WeirDoerge et al.1997
Doerge, R. W., Z. Zeng, and B. S. Weir (1997).
Statistical issues in the search for genes affecting quantitative traits in experimental populations.
Stat. Sci. 12, 195-219.

Dongarra, Moler, Bunch, and StewartDongarra et al.1979
Dongarra, J. J., C. B. Moler, J. R. Bunch, and G. W. Stewart (1979).
LINPACK Users' Guide.
Philadelphia, PA: SIAM.

Falconer and MacKayFalconer and MacKay1996
Falconer, D. S. and T. F. C. MacKay (1996).
Introduction to Quantitative Genetics.
Essex, UK: Longman Group Limited.

FelsensteinFelsenstein1979
Felsenstein, J. (1979).
A mathematically tractable family of genetic mapping functions with different amounts of interference.
Genetics 91, 769-775.

Fisch, Ragot, and GayFisch et al.1996
Fisch, R. D., M. Ragot, and G. Gay (1996).
A generalization of the mixture model in the mapping of quantitative trait loci for progeny from a bi-parental cross of inbred lines.
Genetics 143, 571-577.

HaldaneHaldane1919
Haldane, J. B. S. (1919).
The combination of linkage values and the calculation of distances between the loci of linked factors.
J. Genet. 8, 299-309.

Hannan and QuinnHannan and Quinn1979
Hannan, E. J. and B. G. Quinn (1979).
The determination of the order of an autoregression.
J. Royal Stat. Soc., Series B 41, 190-195.

Horvat and MedranoHorvat and Medrano1995
Horvat, S. and J. F. Medrano (1995).
Interval mapping of high growth (hg), a major locus that increases weight gain in mice.
Genetics 139, 1737-1748.

Jiang and ZengJiang and Zeng1995
Jiang, C. and Z. Zeng (1995).
Multiple trait analysis of genetic mapping for quantitative trait loci.
Genetics 140, 1111-1127.

Jiang and ZengJiang and Zeng1997
Jiang, C. and Z. Zeng (1997).
Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines.
Genetica 101, 47-58.

Kao and ZengKao and Zeng1997
Kao, C. and Z. Zeng (1997).
General formulae for obtaining the MLEs and the asymptotic variance-covariance matrix in maping quantitative trait loci.
Biometrics 53, 653-665.

Kao, Zeng, and TeasdaleKao et al.1999
Kao, C., Z. Zeng, and R. Teasdale (1999).
Multiple interval mapping for quantitative trait loci.
Genetics 152, 1203-1216.

KarlinKarlin1984
Karlin, S. (1984).
Theoretical aspects of genetic map functions in recombination processes.
In A. Chakravarti (Ed.), Human Population Genetics: The Pittsburgh Symposium, New York, pp. 209-228. Van Nostrand Reinhold.

KosambiKosambi1944
Kosambi, D. D. (1944).
The estimation of map distances from recombination values.
Ann. Eugen. 12, 172-175.

Lander and BotsteinLander and Botstein1989
Lander, E. S. and D. Botstein (1989).
Mapping mendelian factors underlying quantitative traits using rflp linkage maps.
Genetics 121, 185-199.

Lander, Green, Abrahamson, Barlow, Daley, Lincoln, and NewburgLander et al.1987
Lander, E. S., P. Green, J. Abrahamson, A. Barlow, M. Daley, S. Lincoln, and L. Newburg (1987).
MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations.
Genomics 1, 174-181.

Lincoln, Daly, and LanderLincoln et al.1992
Lincoln, S., M. Daly, and E. S. Lander (1992).
Constructing genetic maps with MAPMAKER/EXP 3.0.
Technical report, Whitehead Institute Technical Report.

LiuLiu1998
Liu, B. (1998).
Statistical Genomics: Linkage, Mapping and QTL Analysis.
Boca Raton, FL: CRC PRess LLC.

Lynch and WalshLynch and Walsh1998
Lynch, M. and B. Walsh (1998).
Genetics and Analysis of Quantitative Traits.
Sunderland, MA: Sinauer Associates, Inc.

Meng and RubinMeng and Rubin1993
Meng, X. and D. B. Rubin (1993).
Maximum likelihood estimation via the ECM algorithm: A general framework.
Biometrika 80, 267-268.

MorganMorgan1994
Morgan, T. H. (1994).
The Theory of Genes.
New Haven, CN: Yale University Press.

Press, Flannery, Teukolsky, and VetterlingPress et al.1988
Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1988).
Numerical Recipes in C: The Art of Scientific Computing.
Cambridge, UK: Cambridge University Press.

Rao, Keats, Lalouel, Morton, and LeeRao et al.1979
Rao, D. C., B. J. Keats, J. M. Lalouel, N. E. Morton, and S. Lee (1979).
A maximum likelihood map of chromosome 1.
A. J. Hum. Genet. 31, 680-696.

SchwarzSchwarz1978
Schwarz, G. (1978).
Estimating the dimension of a model.
Ann. Stat. 6, 461-464.

SturtSturt1976
Sturt, E. (1976).
A mapping function for human chromosomes.
Ann. Hum. Genet., Lond. 40, 147-147.

Utz and MelchingerUtz and Melchinger1996
Utz, H. F. and A. Melchinger (1996).
PLABQTL: A program for composite interval mapping of QTL.
J. Agric. Genomics 2, 1.

Williams and KelleyWilliams and Kelley1993
Williams, T. and C. Kelley (1993).
GNUPLOT: An Interactive Plotting Program.
Version 3.5.

ZengZeng1992
Zeng, Z. (1992).
Correcting the bias of wright's estimates of the number of genes affecting a quantitative trait: A further improved method.
Genetics 131, 987-1001.

ZengZeng1993
Zeng, Z. (1993).
Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci.
Proc. Natl. Acad. Sci. USA 90, 10972-10976.

ZengZeng1994
Zeng, Z. (1994).
Precision mapping of quantitative trait loci.
Genetics 136, 1457-1468.

Zeng, Kao, and BastenZeng et al.1999
Zeng, Z., C. Kao, and C. J. Basten (1999).
Estimating the genetic architecture of quantitative traits.
Genetical Research, Camb 74, 279-289.



Christopher Basten 2002-03-27