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ABSTRACT 
Wright’s  method of estimating  the  number of  genes contributing  to  the  difference in a quantitative 

character  between two populations  involves  observing the means  and  variances  of the two parental 
populations  and  their  hybrid  populations.  Although  simple,  Wright’s  method  provides  seriously  biased 
estimates,  largely due to  linkage  and  unequal  effects of alleles. A method is suggested  to  evaluate  the 
bias  of  Wright’s estimate, which  relies  on  estimation  of the mean recombination  frequency  between a 
pair  of  loci  and a composite  parameter of variability  of  allelic effects  and  frequencies  among loci. 
Assuming that the loci are uniformly  distributed in the  genome,  the  mean  recombination  frequency 
can  be calculated  for  some  organisms.  Theoretical  analysis  and  an  analysis  of  the  Drosophila  data on 
distributions of effects of P element  inserts on bristle  numbers  indicate  that the value  of the composite 
parameter is likely to be about three or larger for many quantitative  characters. There  are, however, 
some  serious  problems with the current method, such as the irregular  behavior of the statistic and 
large  sampling  variances of estimates.  Because  of that, the method is generally  not  recommended  for 
use  unless  several  favorable  conditions are met.  These  conditions are: the two parental  populations 
are many phenotypic  standard  deviations apart, linkage is not  tight,  and  the sample  size is very large. 
An example is given  on the fruit weight  of tomato  from a cross  with parental  populations  differing in 
means by more  than 14 phenotypic  standard  deviations. It is estimated  that  the  number of  loci  which 
account  for 95% of the  genic  variance in the F2 population is 16, with a 95% confidence  interval of 
7-28, and the effect  of  the  leading locus is 13% of the  parental  difference, with 95% confidence - 
interval 8.5-25.7%. 

C ORRECT estimates  of the  number of  genes  con- 
tributing  to  the  genetic variation of  quantitative 

characters within and between  populations are of fun- 
damental  importance in quantitative  genetics. The 
original  method  of WRIGHT (in CASTLE 1921),  as 
elaborated by WRIGHT (1968),  for  estimating  the 
number of  genes is the simplest and most widely used 
method. The method  relates the difference in the 
means of two inbred lines to  the variance  of their F2 

and backcross populations and relies on a number of 
assumptions. It has been  known for a long  time that 
the estimator is seriously biased. Since it was initially 
proposed,  many  authors  have devised modifications 
for relaxing the assumptions or otherwise extending 
the applicability of the  method. SEREBROVSKY (1 928) 
suggested  formulae utilizing backcross data  for  cor- 
rection  of  dominance  effects  in simplified situations. 
DEMPSTER and SNYDER (1 950) suggested  a simplified 
way for  the  correction of  linkage effects. LANDE 
(1 98 1) pointed  out  that WRIGHT’S method could also 
be used with outbred populations and also suggested 
that  the same  method  could  be  applied to artificially 
selected lines from  a single base population. COCKER- 
HAM (1986)  suggested an unbiased  estimator  of  the 
difference in parental lines and also a method  for 
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combining the  data  from  parental, F1, FP, and back- 
crosses into a single least-squares estimate. All of  these 
analyses, however,  addressed only the effects of  relax- 
ing some  assumptions of the  method,  and  the modified 
estimates are still seriously biased. 

In a  previous paper (ZENG, HOULE and COCKERHAM 
1990,  hereinafter  referred  to as ZHC), we explored 
the utility of selection lines for  estimating  the  number 
of loci and  the effect  of  selection, linkage and  the 
distributions of allelic effects and  frequencies in the 
base population on  the estimation.  We established that 
unequal  effects of alleles and linkage are  the most 
important  factors which create bias in the  estimator. 
In this paper a modification for  correcting  the bias 
from  unequal effects of alleles and linkage is sug- 
gested. The modification relies on the estimation  of 
two new parameters:  the mean  recombination fre- 
quency  between  a  pair  of loci and a  composite  measure 
of variability of allelic effects and frequencies among 
loci. With the assumption that loci are uniformly ( i e . ,  
randomly)  distributed in the  genome,  the mean  re- 
combination  frequency can be  inferred for some or- 
ganisms. However,  the variability of allelic effects has 
to  be estimated from specially designed  experiments 
for which an  example is given for  the effects of P 
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element inserts on bristle numbers  and viability  in 
Drosophila melanogaster. In  the absence of information 
of variability of allelic effects, a  method is suggested 
to estimate the  number of loci  which account  for most 
genetic  variation. This  method  appears  to  be  robust 
and informative. The effects of dominance  on the 
estimator and  the ways for  correction of the resulting 
bias are also analyzed. Simulations are performed  to 
show the statistical behavior and problems of the new 
method and  the conditions for its possible application. 
Finally, as an  example, the  method is applied to  fruit 
weight in a cross of tomato (POWERS 1942). 

WRIGHT’S ESTIMATOR 

WRIGHT’S method involves the means and variances 
of two widely diverged  populations on quantitative 
characters and variances of their  hybrid populations. 
If we let ph and pl be the mean values of the two 
parental  (high P h  and low PI) populations  for  a  quan- 
titative character  and a: be the genetic variance stem- 
ming  from  differences in gene  frequencies of the 
parental  populations in the F2 population  from  a cross 
of the two parental  populations, WRIGHT’S basic for- 
mula for  estimating the  number of loci, m,  affecting  a 
quantitative  character is 

There  are many  ways to estimate a: (WRIGHT 1968; 
LANDE 198 1).  For example, a: can be  estimated as 

a: = ag2 - (ah‘ + a3/2 

where ah’ and a: are  the variances of the two parental 
populations and a& is the variance of the F2 popula- 
tion. Assuming additivity of gene effects, the  different 
estimates given by LANDE (1981) have the same ex- 
pectation, and it is better  to combine  different esti- 
mates by least squares  (COCKERHAM 1986). With gene 
interaction,  however,  different estimates have  differ- 
ent expectations (see below for  dominance). 

The estimator ( 1 )  is unbiased if the following four 
assumptions are  true: [ l ]  All alleles increasing the 
value of the  character are fixed in one (high) popula- 
tion and all alleles decreasing the value of the  char- 
acter  are fixed in the  other (low) population; [2] Allelic 
effect differences are equal at all loci; [3] All  loci are 
unlinked; and [ 4 ]  All alleles interact additively within 
and between loci ( i e . ,  there is no  dominance  and 
epistasis). 

In reality,  however, none of these assumptions are 
likely to be true  and violations of the assumptions can 
seriously bias the estimator. Thus  the WRIGHT’S esti- 
mate of the  number of  loci is usually called the “seg- 
regation index,” “effective” or “minimum”  number of 
loci or “factors.” 

Because the estimator is seriously biased, we seek 

ways and methods to  reduce,  estimate  and  correct  the 
bias  in order  to let the estimator to be informative. 
The bias of the estimator has been  examined system- 
atically by ZHC. There  are many ways to reduce  the 
bias. For example, by performing  strong  divergent 
selection on the  character, highly diverged lines can 
be  created which would largely satisfy assumption [ 11 
(see ZHC for  detailed analysis). Choosing highly di- 
verged  inbred lines or natural  populations  for crosses, 
as suggested by LANDE ( 1  98  l) ,  may also maximize this 
assumption. [If, however, two inbred lines are  not 
widely diverged  for the  character of interest,  the best 
way to satisfy assumption [ 11 is to cross the lines and 
then apply strong  divergent selection on  the  character. 
When the initial frequencies of alleles are 0.5, which 
is the case  in a cross of two inbred lines, selection can 
be very effective in fixing the alleles in the  appropriate 
selection lines (ZHC).] However,  even if assumption 
[ 11 holds, violations of other assumptions can still have 
drastic effects on  the estimates. Our previous analysis 
(ZHC) showed that most  of the bias comes from  un- 
equal allelic effect differences and linkage. When 
the  number of loci, m, is very large, rit at best reflects 
1/( 1 - 277 rather  than m where i. is the mean  recom- 
bination frequency between pairs of  loci (TURELLI 
1984; ZHC). Thus rit is probably  not an informative 
estimator. 

CORRECTING THE BIAS OF THE  ESTIMATOR 

A method: Expressed in terms of gene  frequencies 
and allelic effects under  the additive  model,  Equation 
1 can be  written as 

{i ( p i h  - pil)ai} 

2 

i 
? i = m  m (2) 

(pi,, - pil)’d + CC (1 - 2 r q ) ( ~ i h  - p i l )  
; i#j ( p j h  - pjr)aiaj 

(ZHC)  where ai is the difference in absolute value 
between the effects of two homozygotes at  the  ith 
locus, p ; h  and pit are  the  gene frequencies of the high 
valued allele at  the  ith locus in the high and low 
parental  populations, and rq is the recombination 
frequency  between loci i and j .  If 7-q and ( P i , ,  - p i t )  

( p j h  - pjl)a,aj can be assumed to be  independent (which 
may not  be  appropriate  under selection unless p i h  - 
pil  = l) ,  Equation 2 can be  expressed,  averaged  over 
loci, as 

m= 
z + (m - 1)  

z + (m - 1)(1 - 2 3  (3) 

where i. is the mean  frequency of recombination 
among loci and 

( P i h  - p i J 2 d  

[ ( p i h  - p i l ) ( p j h  - pjdaia j l  
z =  
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Here  an overline  indicates an  average  over loci or 
pairs of loci. 

This expression suggests that a modified estimator, 
m *, can be  defined  as 

h* = 2% + (i - I)(& - 1 )  
1 - h ( l  - 2 3  

;>0 (4) 

to improve the precision in estimating m, where i is 
an  estimate of the  parameter z and is an estimate of 
i. Because (4) is a  ratio  estimator, it is still biased 
(slightly upward) (APPENDIX A).  Numerical analysis 
shows that,  depending  on many parameter values, 
the magnitude of this bias is roughly on  the  order of 
m/10. As discussed below, the effect of this bias on 
the estimation is likely to be small compared with 
sampling effects. 

How can we estimate i and z? Generally we do not 
know i and  are  not able to estimate it directly. How- 
ever, if  we assume that genes are uniformly ( i e . ,  
randomly)  distributed in the  genome, i can  be esti- 
mated  from  the  number  and  lengths of chromosomes 
of the organism  concerned. For example, with HAL- 
DANE'S mapping  function ry = 0.5( 1 - where de 
is the  map  distance  between loci i and j ,  i can be 
estimated as 

M 

2C - M + e-", 

4 c  r = 2 -  
$ 1  i= 1 

(5) 

(APPENDIX B), where M is the  number of haploid 
chromosomes, c, is the genetic  length (in Morgans) of 
the  ith  chromosome  and C = CEI Ck. For M haploid 
chromosomes  each with equal  length c, this is (1.36M 
- 1)/2.72M, (1.76M - 1)/3.52M and (2.19M - 1)/ 
4.38M for c = 0.5, 1 and 1.5 Morgans, respectively. 

If ci's can be  estimated  without bias, of (5) is 
unbiased under  the assumption of the uniform  distri- 
bution.  Current estimates of genetic  lengths of chro- 
mosomes, however, may be biased due to limited 
availability of genetic  markers on  the  chromo- 
somes. As the  number of genetic  markers increases, 
estimates of genetic  lengths of the chromosomes may 
increase and so may P. There  are two sources of 
sampling variation in f .  One is the sampling variation 
of ci's which depends  on  the  method of estimating ti's. 
The  other is the finite number of underlying loci, m, 
involved in the study. For this part of the sampling, 
the sampling variance of ;, a;, is analyzed in APPENDIX 
B, and  the result shows that unless m is very small, a; ? 

is always trivial. 
If genes are not uniformly distributed in a  genome, 

the mean  recombination  frequency will generally be 
smaller than  that in (5) .  In  the case of equal spacing 
of genes  along the chromosomes,  however, the ex- 
pected  mean  recombination  frequency is the same as 
in (5). 

2 

The parameter z is a  function of variation of allelic 
effect differences and frequencies among loci.  Assum- 
ing  that p , h  - p i l  = 1 (it?., assumption [ 11 is true)  and 
ai and ai are independent, z = Z/[iiJ'. This  parameter 
could  be  estimated  from specially designed  experi- 
ments. When individual allelic effects are normally 
distributed,  the  difference, ai, between the two ho- 
mozygote effects is then half-normally distributed, 
and z = 7r/2 = 1.57. There is, however,  growing 
evidence to indicate that  the distribution of allelic 
effects is likely to be highly leptokurtic (e.g., MACKAY, 
LYMAN  and JACKSON 1992) and,  hence, z is likely to 
be  larger  than ?r/2. When p i h  - pi ,  < 1 ,  the variation 
of allelic frequencies  among loci will further increase 
the value of z. The behavior of z (which is equivalent 
to 1/Z without linkage in ZHC) with different distri- 
butions of allelic effects and initial gene  frequencies 
under  divergent selection has been analyzed in detail 
by ZHC. It seems that with reasonable assumptions 
about  the  distributions of allelic effects and initial 
gene  frequencies and relatively strong selection inten- 
sity, the value of z at  the selection limit is between 2 
and 5 or even  larger. The experimental  data on  the 
effects of P element  inserts on bristle numbers in 
Drosophila analyzed below seem to support this ar- 
gument. 

If the individual allelic effects can  be  observed and 
n independent  observations of ai are available, an 
unbiased estimate of z is 

n 

(n - 1)C a' 
i =  

2 n  
i= 1 

(6) (i i= 1 ai) - i= c 1 a' 

and  for a relatively large n the sampling variance of i 
can be  approximated as 

where 
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and 

These  are used for  the  data discussed below. 
In practice, however, necessary data  for  estimating 

z are  hard  to  obtain. In the absence of independent 
estimates of z, a  method is suggested below to estimate 
the  number of  loci  which account  for most genetic 
variation. 

How much bias is likely to be in the estimates of i? 
This, of course, will depend  on  the values of i, F and 
z. Previously we have shown by simulations that in 
practice the expected value of i might  be about equal 
to  the  number, M ,  of haploid chromosomes if the 
number of genes, m, is much  larger  than M .  Thus for 
M haploid chromosomes each with length  one Mor- 
gan,  the  expected value of i* in practice may be 
about 1 + 2.32z(M - l) ,  or seven times the  number 
of chromosomes  for z = 3. This can increase signifi- 
cantly if i is larger  than M ,  but less than 1/(1 - 2;) 
(Figure 1). On  the  other  hand,  there is relatively little 
difference between i* and i when i is significantly 
smaller than M .  

Sampling variance: For  WRIGHT'S  estimator, 
LANDE (1981) has giveman  approximate  formula  for 
calculating the sampling variance u$. The variance of 
the modified estimator involves the variance of esti- 
mates of F and z. By using the  Taylor  expansion  on  a 
ratio  estimate (STUART and  ORD 1987, pp. 325), the 
sampling variance of estimates of (4) can be  approxi- 
mated as 

4Wa:  + 4 i 2 ( i  - lyra; + 121u; 
+[1  -i(l '2$]i[&+(i--1)2]U: 

[ 2 i i  + (i - l)(G - ;)I2 
[ 1 - i ( 1  - 2iy2 

g$* & *2 

(8) 

There  are, however, several problems in using this 
formula to calculate the sampling variance of i*. 
Strictly speaking this approximation applies only when 
the  denominator of the estimator (4), i .e. ,  1 - i ( 1  - 
$), is always greater  than zero. When  the  denomi- 
nator of a  ratio of two random variables overlaps the 
zero  region, the variance of the  ratio  does  not exist 
and  the observed sampling variance can  be very large 
(CARSON and LANDE 1984; ZHC). This is the case for 
both WRIGHT'S estimator and  the modified estimator, 
and can cause serious  problems in estimation.  Fur- 
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FIGURE 1.-The relation between Gt and Gt* for L = 2, 3, 4, 
and 5 .  The mean recombination frequency, ?, used is 0.475. 

thermore, estimates of the sampling variance (8) de- 
pend critically on estimates of i*. When i* happens 
to be small, u$* can be very  small  which  may be 
misleading if it is used to construct  a  confidence 
interval of the  estimate. On  the  other  hand, when i * 
is large, u$* can be very large. Thus  the meaning of 
estimates u$* should  be interpreted cautiously. 

In  practice, however, u; and u; are unknown. As a 
rough  guide, a$* may be further  approximated by 
ignoring the a? and u! terms 

2 2 

This is a minimum bound  on  the sampling variance. 
Simulation study shows, however,  that most of the 
variation of i* is due  to  the variation of i and 
relatively little to  the variation of and i. The differ- 
ence between (8) and (9) is generally small. Alterna- 
tively, the sampling variance and  the confidence in- 
terval of i* may be  estimated by using bootstrap 
resampling of data, as CARSON and LANDE (1 984) did 
for m. 

Dominance: To reduce  the effects of gene  interac- 
tion on  the  estimation, WRIGHT (1968) and  LANDE 
(1981) suggested that,  before  estimation,  the meas- 
urement of the  character  should  be  transformed to a 
scale on which genetic variance is largely additive. To 
test whether  the  phenotypes satisfy the assumption of 
additivity, LANDE (1981) designed a  triangular test 
which graphs the variances against the means to give 
a  triangular pattern with F1 and backcross populations 
at  the midpoints of the edges  connecting the parental 
and F2 populations. This is a very useful test. 

However, when the mean of the F1 population 
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deviates significantly from  the midpoint of the two 
parental means, or the  triangular  pattern is signifi- 
cantly distorted  even  after  the scale transformation of 
the  measurement, we may have to consider the effects 
of gene  interaction,  such  as  dominance. 

Let the effects of the  three genotypes for two alleles 
at  the  ith locus be 

Genotype A,A, Aiai aiai 
Genotypic effects ai (1 + d,)a,/2 0 

where di is the  degree of dominance.  When di = 0,  
there is no dominance; di = 1, complete  dominance 
of. allele Ai; di = - 1, complete  dominance of allele ai; 
and so on. With the assumptions of Hardy-Weinberg 
and linkage equilibria in the two parental  populations 
and  no epistasis, the phenotypic means and variances 
of different  populations with dominance  are listed in 

With dominance  the  estimator of (1) is further 
biased, and  different estimates of the  denominator of 
(1) using variances of different  populations  suggested 
by LANDE (1 98 1) will be  different by expectation; 

If pFl > ' /2 (ph + pr), SEREBROVSKY (1928)  suggested 
that it is better  to use 

APPENDIX  C. 

to minimize the bias due  to dominance,  where p F I  and 
a:, are  the mean and variance of the F1 population 
and u& is the variance of the backcross (F, X PI) 
population. This  estimator, however, is unbiased by 
dominance only when the  degrees of dominance  and 
gene  frequencies are constant among loci. Otherwise 
the estimator is still biased downwards by dominance. 
For (lo),  the modified estimator is that given by (4), 
where z is  now 

(1 + di)2a? 
z =  

[(I + &)ai]' 
and is therefore a  measure of variation of heterozy- 
gote  genotypic effects on  the  character  among loci. 
Since variation of d, among loci increases z, the effect 
of dominance in this case is to reduce  further  the 
expected value of the estimator  (1 0). 

I f  p i h  - pit  1, WRIGHT (1968, p. 394) suggested 
using 

to minimize the effect of dominance,  where ai, is the 
variance of the backcross (FI X Ph) population. In this 
case the modified estimator is still that given by (4), 

but with multiplied by a  factor 

or if ai and di are independent 

y = 1 + (1 - 2 3 ( @  

where 7 is the mean of squares of recombination 
frequencies.  For an uniform  distribution of genes in 
the genome 

" - M r 
- 

2C2 - 2C + M - e-2c2 

if m b M. When m < M ,  7/F can be  larger or smaller 
than I/z. 

Estimation of the  parameter af/if-an example: 

a?/Z' is a key parameter  for  correcting  the bias due 
to unequal effects of alleles in estimating m. T o  esti- 
mate a?/Z', however,  an  experiment has to  be able to 
identify the effects of individual alleles, and  the effects 
of identifiable alleles have to cover the whole range 
of the distribution of allelic effects. That means that 
an  experiment has to be  able to identify not only 
alleles with large effects but also alleles with  small 
effects. Experimental  data which  allow z/Zp to be 
estimated are very scarce. 

Recently, MACKAY, LYMAN and JACKSON (1992)  
reported  observations of distributions of the effects 
of P element inserts on viability and abdominal and 
sternopleural bristle numbers in D. melanogaster. 
From an  inbred host strain  background free of P 
elements, they constructed 94  third chromosome lines 
by P element mutagenesis which contained on average 
3.1 stable P element inserts. Both homozygous and 
heterozygous  insert lines were constructed. By com- 
paring the chromosome lines with inserts to insert- 
free  control lines of the  inbred host strain,  the ho- 
mozygote and heterozygote effects of the inserts on 
viability and abdominal and  sternopleural bristle num- 
bers can be  estimated. The estimates of z/Z? and 
(1 + di)2a?/[( 1 + d,)a;I2 using only those  chromosome 
lines which have single P element inserts are shown in 
Table 1 with the homozygote and heterozygote effects 
being estimated  as 

i= 1 

- 

- As a  measure of variation of allelic effects among loci, 

ai = I HOM, - CON I 

(1 + di)a, = HET, - HOMi + CON 
2 

+ I HOMi - CON I 
2 

corresponding with the above  notation,  where HOM, 
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TABLE 1 

Estimates of variability of homozygote  and  heterozygote effects 
of single P element  inserts in D. mnelanogaster 

Character n a,PlciP n (1 + d,)'a,P/[(l + d,)ai]* 
- " 

Abdominal  bristles 29 2.94 f 1.02 27 4.44 f 1.56 
Sternopleural  bristles 29 2.48 f 0.84 27 a 

Viability 35 1.73 f 0 . 2 0  27 6 . 1 6 f  4.60 
- 

Sample  sizes ( n )  are given with  estimates  and  their  standard 
errors. Data are  kindly  provided by T. F. C. MACKAY. 

Estimate  and  standard error are too large  and  are omitted, see 
MACKAY, LYMAN andJAcKsoN (1992) for other similar  observations 
on this  part of the data. 

and HET, are  the means of the  ith homozygote and 
heterozygote  insert line and CON is the mean of 
control lines. 

Due to small sample sizes the sampling variances of 
estimates are quite  high. Still, the estimates of a'/i' 
for  abdominal and  sternopleural bristle numbers  ap- 
pear to be significantly larger  than 1.57, the expected 
value for  a  normal  distribution of allelic effects, as 
indicated by the simulated 95% confidence  intervals 
(1.94,  5.02) for  abdominal bristle number  and (1.75, 
4.07) for  sternopleural bristle number,  and also by 
the evidence that  the distributions of the insert line 
means are significantly negatively skewed and lepto- 
kurtic (MACKAY, LYMAN  and JACKSON 1992). (The 
bootstrap  resampling estimates tend  to be biased in 
this case.) Because the insert line means contain some 
environmental  deviations,  these estimates are likely to 
be underestimates of the effects of single P element 
insertions on  the statistics (W. G .  HILL in MACKAY, 
LYMAN andJAcKsON 1992). The estimate  for viability 
is relatively small, presumably partly because viability 
is bounded  at  one  end by zero. 

There was considerable variation in the  degree of 
dominance  (MACKAY, LYMAN  and JACKSON 1992), so 
both  the estimates and sampling errors of ( 1  + di)*a?/ 
[(l + di)ai]' are  quite high. 

PROBLEMS AND UTILITY 

There  are many problems in using m* to correct 
the basis of rii and  to estimate m. These  are discussed 
here: 

Sensitive  estimator,  large sampling covariance 
and  low efficiency: The estimate rii* is a  nonlinear 
function of k and 9 (Figure 1)  and is very sensitive to 
change in valueslof rii and 9, particularly when rii is 
close to 1/(1 - 2;). This sensitivity of rii* is caused by 
the fact that rii is a very insensitive estimator of m 
(ZHC). The sampling variance of estimate of mean 
recombination  frequency is generally small (APPENDIX 

B), but  the sampling variance of rii can be very large 
(ZHC). As a  result the sampling variance of rii* can 
be extremely  large. As rii* relies on rii, it inherits the 

properties and also problems of 2. Thus  the efficiency 
of the  estimator  can  be very low, even if we know the 
correct values of z and i.. 

High frequency of negative  estimates: The esti- 
mate rii* is positive only when WRIGHT'S estimate, rii, 
is bounded by 

i- 1 1 
2 ; + i -  1 1 - 2r 

<rii<-, 

otherwise it will be negative. Although by expectation 

1 
1 - 27 

1 d 9(rii) < - 

where 9denotes expectation, the statistic rii can be 
smaller than 1 or larger  than 1/ (1  - 29) due  to 
sampling. This can happen  quite  often when the mean 
difference between the two parental  populations is a 
small number of phenotypic  standard deviations, or 
linkage is tight (ie., the  number of chromosomes is 
small), or the sample size is small (see below), and will 
result in many nonsensible estimates. 

Difficulty in estimating  the  parameter z :  Few data 
are available for  estimating the  parameter z. This is a 
fundamental  parameter in quantitative genetics. The- 
oretical analysis and limited available data  indicate 
that this parameter,  taking only unequal allelic effects 
into  account, is very likely to be  larger  than 2 for 
many quantitative  characters like bristle numbers in 
Drosophila. If we also take the possible variation of 
allelic frequencies among loci into  account,  the likely 
value of the  parameter is even  larger. This means that 
ignoring the variation of allelic effects and frequencies 
among loci can seriously bias estimates of the  number 
of genes. Fortunately,  however, rii * is a  linear  function 
of z and  the bias in rii * from using i is proportional  to 
the difference i - z. As m is a  fundamental  parameter 
in genetics, it is very desirable to estimate  the  param- 
eter z and use  it to  correct, at least partially, the bias 
due  to  the inequality of  allelic effects and frequencies. 
On  the  other  hand, in  many applications what is 
relevant is probably not  the  total  number of loci, as 
this depends  on  the  distribution of  allelic effects, but 
the  number of  loci  which account  for most  of the 
genetic variation. As shown below, estimates of  the 
latter  number are largely independent of the  param- 
eter z. 

T o  illustrate some of these  problems and also to 
evaluate  conditions  for the possible utility of the 
method, simulations were performed.  In  these simu- 
lations the two parental  populations are assumed to 
be fixed with appropriate alleles (it?., the assumption 
[ 11 is assumed to be true)  and differ in means by  many 
environmental  standard deviations (since the popula- 
tions are fixed, all phenotypic variation is environ- 
mental). The allelic effect differences  among m loci 
are assumed to be identically and independently dis- 
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TABLE 4 

Simulation results 

m m* 0 < m* < 1000 

m M n D hpa Mean SD 90% interval Mean SD 90% interval Mean SD P(ok)b 

20 3 100 5 0.487 3.86 1.68 1.96 7.13 64.93 1205.72 -145.29 125.02 36.66 68.06 0.844 
10 0.788 3.55 0.92 2.19 5.16 39.17 600.55 5.76 154.30 41.42 71.38 0.952 
15 0.890 3.45 0.76 2.24 4.79 29.11 91.43 6.66 94.89 31.24 35.06 0.980 

300 5 0.480 3.52 0.88 2.31 5.00 42.39 259.37 6.81 127.54 37.01 60.97 0.968 
10 0.788 3.51 0.68 2.40 4.72 37.32 110.94 8.64 93.81 34.63 50.28 0.990 
15 0.889 3.47 0.67 2.43 4.57 34.82 79.36 8.88 79.71 32.60 49.47 0.994 

10 0.698 5.97 1.90 3.41 9.41 26.57 21.84 9.98 55.17 26.57 21.84 1.000 
15 0.836 5.72 1.61 3.32 8.46 23.55 12.09 9.59 44.06 23.55 12.09 1.000 

300 5 0.356 6.27 2.46 3.47 10.53 29.98 117.05 9.84 71.59 30.25 39.75 0.994 
10 0.695 5.83 1.45 3.69 8.40 23.94 10.47 11.23 43.38 23.94 10.47 1.000 
15 0.833 5.74 1.34 3.61 8.03 23.15 9.28 10.85 39.79 23.15 9.28 1.000 

20  100 5 0.334 9.36 59.60 3.06 20.25 31.09 149.39 6.17 103.94 35.52 58.65 0.964 
10 0.661 6.85 2.57 3.99 11.75 24.31 19.36 11.11 49.36 24.31 19.36 1.000 
15 0.813 6.72 1.91 3.85 10.07 22.79 9.09 10.61 39.10 22.79 9.09 1.000 

300 5 0.331 7.35 3.85 3.94 14.00 38.92 207.61 10.92 65.75 29.88 47.07 0.998 
10 0.656 6.92 1.95 4.15 10.24 23.76 9.43 11.70 40.06 23.76 9.43 1.000 
15 0.81 1 6.59 1.70 4.03 9.83 22.09 7.79 11.27 37.76 22.09 7.79 1.000 

10 100 5 0.367 6.92 14.82 2.88 15.32 -48.19 1548.99 4.85 79.35 32.72 60.60 0.952 

100 3 500 5 0.400 4.83 1.00 3.45 6.68  12.70 1147.33 -421.72 522.18  112.05 152.26 0.704 
10 0.730 4.78 0.51 3.99 5.67 97.74 1062.97 -337.43 553.26 140.21 151.66 0.822 
15 

10 300 5 
10 
15 

500 5 
10 
15 

20  100 5 
10 
15 

300 5 
10 
15 

500 5 
10 
15 

0.857 
0.210 
0.515 
0.708 
0.208 
0.513 
0.702 
0.154 
0.422 
0.61 1 
0.152 
0.419 
0.614 
0.151 
0.416 
0.6 14 

4.76 
7.28 

12.47 
12.27 
14.19 
12.14 
12.06 
6.60 

21.29 
19.25 
29.24 
18.97 
18.16 
52.66 
18.39 
18.00 

0.45 
203.62 

2.71 
1.86 
9.56 
1.94 
1.67 

198.98 
15.03 
12.43 

244.50 
5.43 
3.26 

572.42 
4.16 
2.80 

4.02 
6.47 
8.61 
9.29 
7.50 
9.20 
9.48 

-79.76 
10.72 
12.16 

-67.50 
12.26 
13.56 
9.40 

12.69 
13.66 

5.48 
33.52 
17.21 
15.32 
25.30 
15.70 
14.87 
84.49 
40.31 
28.53 
83.55 
28.89 
23.63 
81.93 
26.38 
22.72 

-115.04 
566.92 
146.98 
171.16 
50.93 

149.2 1 
116.97 
143.98 
-20.72 
142.96 
263.74 
152.83 
118.22 
102.73 
150.75 
11 1.98 

5775.52 
11590.13 

803.81 
652.81 
585.19 
195.89 
285.03 

2460.06 
3180.12 
308.46 

4685.48 
248.25 
63.12 

11 18.56 
409.50 
43.48 

-43 1.63 
-499.03 

37.04 
52.49 

-537.55 
52.06 
54.87 

-352.15 
-584.39 

48.94 

51.37 
62.28 

55.81 
63.04 

-468.49 

-51 7.67 

826.53 
437.67 
618.67 
323.34 
476.49 
369.10 
266.20 
33 1.03 
620.92 
399.36 
503.90 
379.00 
207.09 
450.08 
304.27 
184.48 

159.14 
104.87 
148.53 
134.03 
134.88 
138.29 
121.63 
100.38 
140.97 
133.18 
128.99 
138.14 
118.22 
124.84 
126.50 
11 1.98 

165.51 
107.10 
144.06 
87.61 

135.90 
123.17 
71.82 

128.59 
139.94 
112.54 
149.06 
114.34 
63.12 

130.80 
86.26 
43.48 

0.850 
0.730 
0.963 
0.986 
0.798 
0.986 
0.988 
0.674 
0.886 
0.976 
0.784 
0.980 
1 .ooo 
0.794 
0.992 
1.000 

a h* is the heritability in the F? population. 
P(ok) is the proportion of truncation. 

tributed and samples from a gamma distribution 
pBa 8- 1 e -4 

f ( 4  = r(@) O < a < m ,  O < p < m  (12) 

with the shape parameter /3 = 0.5 which  gives z = 
(1 + p)/p = 3 (see ZHC). (The definitions of m and z 
are inseparable. Without specification  of  allelic effect 
distribution we can not talk about  the number of  loci 
for  a given amount of genetic variation. In this  section 
m is defined and discussed  in reference to  the gamma 
distribution of  allelic  effects  with z = 3.) Loci  were 
assigned  map  positions at  random on M chromosomes 
of length 100 cM. For each replication, map positions 
and allelic  effects  were  chosen for each locus. The 
expected difference in means  between the two paren- 
tal populations was calculated and  the environmental 
variance, US, was then chosen to give the specified 

mean difference, D = (ph - pl)/ue, for the parental 
populations  in environmental standard deviations.  Pa- 
rental, F1 and F:! populations were simulated each 
with n individuals  with phenotypes assigned by adding 
a random normal deviate with variance u: to the sum 
of the allelic  effects for each genotype. The estimate 
hi was calculated by (1) with correction on the numer- 
ator and a: estimated using  least squares. The modi- 
fied estimate rii* was calculated  with ; given by ( 5 )  
and i = 3. Of course, in  reality  genes are not com- 
pletely  fixed  in the  appropriate populations and  the 
true parameter value  of z is not known. 

Table 2 gives the means, standard deviations and 
90% confidence intervals for rii and rii* as  well  as the 
results  based on the truncation 0 < rii * < 1000 for 
different values  of m, M ,  n and D. The results depend 
very  much on the values  of m/M and D as  well  as n. 
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These  parameters  decide  the  range  and locations of 
most estimate values of &, which  in turn directly affect 
estimates of &*. When D is small (and  thus  the  ratio, 
h2 ,  of genetic variance over  phenotypic variance in F2 
population is small), the interval of & will be wide and 
will likely to cover the critical region of 1/(1 - 2;) 
which would have drastic effects on &* and cause 
many estimates of &* to have very large positive or 
negative values.  Also when m/M is large, many esti- 
mates of & will be relatively high in value and  near 
the critical region, which can cause a significant pro- 
portion of estimates of & * out of the  truncation  region 
even when D and n are high. This  phenomenon is 
very troublesome for those organisms with a small 
number of chromosomes and tight linkage, like 
D. melanogaster. 

When m/M is small and D and n are large, how- 
ever, most estimates of & are in the  range of l and 
1/( 1 - 2;) and  the statistic & * behaves very well. This 
gives some hope to  the  method  and suggests that 
under some very favorable  conditions the  method 
proposed in this paper may be  informative as a way to 
estimate the likely magnitude of the  number of genes 
concerned.  These  conditions are summarized in four 
parameters m, M ,  n and D ,  or more generally by the 
ratio &DM/m. From simulations, it appears  that 
when &DM/m > 15, the lower bound of 90% interval 
of &* is likely to be positive. The 90% interval of &*  
is a  good  indicator of the behavior of &*. When the 
interval is on the positive side, at least 90% of the 
estimates of rii* are in the  truncated  region  and  the 
standard deviation of truncated rii* tends to be small. 
Among  the  four  parameters, m is unknown and is the 
subject of estimation.  However, when M ,  D and n are 
all sufficiently large, we may expect  that estimates of 
&* may be reliable as an indicator of the likely mag- 
nitude of m. 

The averaged estimates of the  standard  deviation 
of & * by (8) and (9) are generally of the same magni- 
tude as those observed and given in Table 2. Re- 
stricted to  the  truncated  region,  the averaged esti- 
mates of UG* by (8) and (9) generally underestimate 
the  observed  standard  deviation of rii*. (Some con- 
crete examples will be given in reference to  the dis- 
cussion on the  fruit weight of tomato.)  However, since 
an  estimate of u,* strongly  depends on  the estimated 
value of rii*, a  particular  estimate of ut;l* may not  be  a 
good  estimate of the  standard  deviation. 

The message of simulation results is clear.  Gener- 
ally, estimates of rii * are unpredictable and have very 
large sampling variances. However, under some very 
favorable conditions, the estimates do converge to  the 
number of genes under estimation if the  parameter z 
can be estimated reliably and  gene effects are additive. 
These conditions are very restrictive,  but not  unreach- 
able in experiments. 

THE NUMBER OF LOCI WITH SIGNIFICANT 
EFFECTS 

Since the effects of genes are  not equal, we have a 
serious problem in discussing the  number of genes, m, 
affecting  a  character. The questions  often asked are: 
“What is meant by a locus in this context?”  and  “Where 
do we stop  counting  a locus as one affecting the 
character?”  These  questions  are  related  to  the  param- 
eter z. The value of z can be very high if loci  with 
infinitesimal effects are included in the  distribution, 
and  indeed, by virtue of universal pleiotropy, m could 
include essentially all  loci  in the  genome which differ 
in two populations. Not all these loci contribute sig- 
nificantly to genetic variation within and between 
populations, however. Thus instead of discussing the 
total number of loci, m, it might  be better  and  more 
informative to estimate the  number of  loci  which 
account  for  a specified proportion of the differences 
between populations or genetic variation within pop- 
ulations. We  may  call this number  “the significant 
number of  loci.” The meaning of the  term will become 
apparent.  Another reason to estimate this number 
rather  than  the total  number is the lack of information 
of the  parameter value of z for  a given data set. 
Estimation of the total number  depends  strongly  on 
the value of z. However, as shown in the  next  section, 
estimation of the significant number of loci  is rela- 
tively independent of z. 

The reason is that  there is a  reverse  relationship 
between the value of z and  the  proportion of loci 
which accounts for most of the variation. As z in- 
creases, the  estimated number of loci increases but 
the  proportion of the loci  which accounts  for most of 
the variation decreases. As a  result, at some point the 
effects of changing z will be balanced out, which would 
leave the significant number of  loci more or less 
unchanged. 

EXAMPLES 

There  are numerous  reports, in the  literature, of 
estimates of “minimum” or “effective” numbers of  loci 
contributing  to  the  difference in a  quantitative  char- 
acter between two populations. Many estimates indi- 
cate only a few “minimum”  factors.  However, esti- 
mates from highly diverged  populations are usually 
about 5 to 10, with occasional values up to 20 
(WRIGHT 1968; LANDE 1981). T o  correct  the bias on 
these estimates due  to linkage, we have to choose 
estimates from those organisms for which genetic 
lengths of chromosomes are known, so that  the mean 
recombination  frequency ? can be  estimated  (orga- 
nisms  like tomato, maize, mouse and D. melanogaster). 
Two data sets on crosses between different popula- 
tions or selection lines that differ greatly in quantita- 
tive characters are given in Table 3. These examples 
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TABLE 3 

WRIGHT estimates of the number of loci from crosses between widely divergent selection lines or varieties 

Populations n c1 (72 M r m 

Tomato: fruit weight 
PI 420  -0.137  0.0165 
BI 932  0.249  0.0339 
F I  475  0.710  0.0144 
FP 932  0.653  0.0570 
BP 93 1  1.163  0.0344 
PP 456  1.689 0.0 165 12  0.479  10.7 f 0.5 

PI 22  0.513 0.00 142 
BI 68  0.670 0.00 169 
FI 20  0.817  0.00030 
F P  146  0.803  0.00303 
BP 74  0.972 0.00 169 
PP 19 1.122  0.00053 10 0.475  21.1 f 3.1 

Maize: percent oil in kernels 

Sample size (n),  means (r),and variances (a’) of the characters in  parental and hybrid populations are given with the haploid number of 
chromosomes ( M ) ,  estimates (i) of mean recombination frequency, WRIGHT’S estimates (&) of the number of loci and their estimated standard 
deviations. Data are from WRIGHT (1968), originally from POWERS (1942) and SPRAGUE and BRIMHALL (1949). 

are from  the well-known experiments cited by 
WRIGHT (1968) with the measurements of the  data 
transformed to a scale on which the phenotypic dis- 
tribution is approximately  normal. 

Fruit weight of tomato: POWERS (1  942) crossed two 
varieties of tomato  that  differed 56-fold (about  14 
phenotypic  standard deviations) in fruit weight. As 
shown by WRIGHT (1 968) and LANDE (1 98 l), the  data 
after  transformation give an excellent fit to  the addi- 
tive prediction. The estimate of iz is 10.7 +- 0.5 by 
weighted least squares to utilize all available data, 
assuming additive  gene  action. Tomato has 12 haploid 
chromosomes. Current estimates of genetic  lengths 
of the chromosomes are given in O’BRIEN (1990). 
Two linkage (classical and restriction  fragment  length 
polymorphism) maps are given in pages 6.4  and  6.5 
of O’BRIEN (1990).  For  each  chromosome  the esti- 
mate of chromosome  length is based on  the  longer 
map, and  the estimated  genetic  lengths  for the twelve 
chromosomesare  211,  163,  123, 103.9, 101.1,  142.2, 
89.9,  91.8,  129.2,  134,  98  and  103.7 cM. This gives 
a  mean  recombination  frequency P 0.479 by (5). The 
estimate of the  number of loci  is then  about  doubled 
by correcting  the bias due  to linkage. 

Since z is not known for this data  set,  different z 
values were used to estimate the significant number 
of loci. The estimates of iz * (after  being multiplied by 
a  factor of 0.92  for z = 1 - 5, 0.90  for z = 10  and 
0.88 for z = 100 to  correct  the bias of  the  ratio 
estimate, see APPENDIX A) by using different z values 
are given in Table 4. Simulations were used to provide 
confidence  intervals of the estimates since the esti- 
mated  standard  deviation is not very informative al- 
though it is given. This is particularly  worthwhile  for 
this data  set which is very  well suited to estimation of 

the  number of genes, as the  difference in parental 
populations, sample sizes and  the chromosome  num- 
ber  are all large,  and also there is clear  evidence  for 
additive  gene  action. Assuming that  the two parental 
populations are fixed or nearly fixed, the environmen- 
tal variance is estimated to be (7; = 0.01535 by least 
squares utilizing observations  from all the populations. 
(If the parental  populations are not  fixed, (7: con- 
tains some genetic variance which is assumed to be the 
same for  both  parental populations.) This gives 
6 = 14.74. In simulations D = 14.74  and m = i* 
were used as parameter values. Sample sizes are those 
given in Table  3. For z = 1, effects of all  loci are the 
same. The case of z = 1.57 is simulated by the half- 
normal  distribution. These two cases are given for 
reference.  For  other z values (2,  3,  5,  10  and  100)  the 
allelic effects are assumed to be gamma distributed 
with P = l / (z  - 1). Figure  2 plots these  distributions 
with each scaled to have unit  mean. The simulation 
procedure is the same as before  except  that the back- 
cross populations are also simulated  here. The results 
based on  1000 replications are given in Table  4. 

First it is noted  that  for  fixed D ,  the simulated 
estimates and  95% confidence  intervals of iz are con- 
sistent for  different z values as  expected. The esti- 
mated sampling variances of i and i* are  about 94 
to L/s of variances found in the simulations, which 
shows that  the  estimated sampling variances are 
underestimates but consistent. 

Next,  these estimates are used to construct estimates 
of the significant number, i?, of loci. For  a given z 
and  the  corresponding estimate of m (or the interval 
of m), m random variables are sampled from  the 
specified distribution,  and  then  ordered. The propor- 
tions of the  parental  difference D ( x  Cc, ai) and  the 
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TABLE 4 

Interval  estimates of the  number of loci by simulations  for  the  fruit  weight of tomato 

Estimated i* Simulated vi Simulated i* 

2 Mean SD ma Mean SD 95% interval Mean SD 95% interval 

e = 0.479 
1 .oo 17.08 1.56 17 10.30 1.35 7.68 13.16 16.62 4.06 10.06 26.49 
1.57 26.31 2.46 26 10.26 1.46 7.48 13.23 25.5 1 6.94 14.68 41.60 
2.00 33.25 3.13 33 10.35 1.55 7.16 13.34 32.84 9.29 17.26 53.74 
3.00 49.41 4.69 49 10.41 1.75 6.81 13.65 49.86 16.40 23.56 85.79 
5.00 81.74 7.82 82 10.38 1.84 6.84 14.13 82.51 29.28 38.88 153.49 

10.00 159.03 15.31 159 10.37 1.89 6.67 14.25 160.99 63.53 72.32 306.19 
100.00 1546.87 149.67  1547 10.39 1.96 6.50 14.05 1539.60  579.45 655.81 2815.35 
= 0.483 

1 .oo 14.9 1 1.18 15 10.40 1.39 7.77 13.18 14.32 2.95 9.3 1 20.80 
1.57 22.90 1.86 23 10.40 1.46 7.42 13.22 23.02 4.88 13.20 32.33 
2.00 28.91 2.37 29 10.54 1.73 7.28 14.07 28.53 7.51 16.14 45.99 
3.00 42.90 3.55 43 10.52 1.85 7.13 14.24 42.35 12.09 23.07 70.13 
5.00 70.89 5.91 71 10.71 2.08 6.75 14.82 72.55 23.46 35.00 125.82 

10.00 137.80 11.57 138 10.65 2.08 6.66 14.52 139.86 45.21 66.33 235.22 
100.00 1339.45 113.11 1340 10.68 2.23 6.50 14.93 1343.39 471.45 603.36 2372.97 

The number of loci used for simulations. 

1.4 
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1.0 

0.8 
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0.0 0.5  1 .o 1.5 2.0  2.5 

a 
FIGURE 2.-Distributions of allelic effect differences, a, used for 

simulations. The dotted curve is for the half-normal distribution. 
The solid curves are for the gamma distribution with @ = 1, %, %, 
'/9 and l/99. All distributions are scaled to have unit mean. 

genic variance, ui ( x  ZS, a:), in the F2 population 
accounted for by individual ordered variables are 
calculated.  Figure 3 plots the estimates and 95% con- 
fidence  intervals of %? on D (Figure 3A) and ui 
(Figure 3B) for  different  parameter values of z. Some 
of these estimates are listed in Table 5. (These esti- 
mates are based on 500 replications. Variations  among 
replications are generally very small.) This of course 
covers a wide range of distributions.  For D, the signif- 

icant numbers still depend  on  the distribution of allelic 
effects unless the specified proportion is small, say 
50% of D. For ui, however, the significant numbers 
are largely independent of the distribution of  allelic 
effects. This is particularly true for z 3 2. More 
significantly, as z changes  from 1 to 100, the estimated 
m changes  from 17 to 1540 but  the  number of loci 
accounting  for 95% of the genic variance stays more 
or less at 16! 
As indicated in Figure 3, the  current  method may 

also be used to estimate the effects of leading loci. 
Figure 4 plots the estimates and 95% confidence 
intervals of the effects of the first five leading loci as 
a  proportion of D (Figure 4A) and ui (Figure 4B). 
Taking 2 S z S 100, the effect of the leading locus is 
estimated  between 12.4% and 14.9% of D which is 
remarkably close. Expressed in terms of the  propor- 
tion of ui, the  range of estimated effects of the leading 
locus is larger  and varies between 26.7% and 37.7%. 

There is, however, still another possible  bias on 
these estimates, the bias due  to  the estimate of mean 
recombination  frequency, as the genetic  lengths of 
the chromosomes  might  be  underestimated. T o  ex- 
amine  the possible consequence of this bias on  the 
estimates of significant number of loci, the genetic 
lengths of the chromosomes are artificially amplified 
by 50%. This gives f = 0.483. This reduces almost all 
estimates by about 13% (Tables 4 and 5). Considering 
the magnitudes of sampling variances involved, the 
effect of this change is relatively small. 

For this data  set, the  number of  loci  which account 
for 95% of the genic variance in the F2 population is 
estimated to be 16 with 95% confidence interval (7, 
28), and  the effect of the leading locus is estimated to 
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FIGURE 3.-Estimates and their 95% confidence intervals for  the 

number of loci, 6i$, which account for proportions of the parental 
difference, D, (A) and  the genic variance, 4, in the F2 population 
(B) for the  fruit weight of tomato. The solid line and curves are  the 
estimates, and  the  dotted  and dashed lines and curves are  the 
corresponding 95% confidence intervals. Different z values are 
simulated. Three (solid, dotted  and dashed) lines are  for z = 1. 
Three (solid, dotted  and dashed) groups of six curves are  for z = 
1.57, 2, 3, 5, 10 and 100. 

be 13% of the  parental  difference with 95% confi- 
dence  interval (8.5%,  25.7%).  These results tend  to 
be robust. 

Oil content of corn: The famous Illinois long-term 
experiment selecting for high and low  oil content in 
corn seeds was started in the last century  and has 
continued  for  over  nine  decades to  the present  time. 
After  selecting for  over  four  decades, SPRACUE and 
BRIMHALL (1949)  reported  the results of crosses be- 
tween the high and low selection lines which differed 
roughly 8-fold (more  than 9  phenotypic  standard  de- 
viations) in mean oil content. The estimates of & from 
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FIGURE 4.-Estimated effects and their 95% confidence intervals 
of the first five leading loci expressed in terms of proportion of the 
parental difference, D, (A) and  the genic variance, ui, in the F2 
population (B) for  the fruit weight of tomato. Six  solid  lines are  the 
estimated values for z = 1,2, 3, 5, 10 and 100. Six dashed lines and 
six dotted lines are for the corresponding 95% confidence intervals. 
The lines for z = 1 are drawn for  reference. 

the crosses are  about 20 (LANDE 1981). The least 
squares  estimate is 2 1.1 f 3.1. Maize  has a haploid 
chromosome number of 10  and  the estimated mean 
recombination  frequency P is 0.475 (O'BRIEN 1990). 
The estimate  21.1 exceeds the estimated limit 
1/(1 - 2;) = 20 and is too  large to be corrected. As 
the sample sizes of the  experiment  are relatively small, 
this large  estimate  can be attributed  to sampling ef- 
fect. On  the  other  hand, a  large  estimate may indicate 
that  the  underlying number of loci, m, or the signifi- 
cant  number of loci  is large. There is indeed  evidence 
to indicate that this is probably the case here. Selection 
response has continued almost linearly for  90  gener- 
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TABLE 5 

Estimates of significant number, mi, of loci accounting  for  proportions of D and ui for the fruit weight of tomato 

D 4 

z ma 50% 75% 90% 95% 99% 50% 75% 90% 95% 99% 

i = 0.479 
1 .oo 17 9 13  16 17 17 9 13 16 17 17 

1.57 26 7 12  18 20  24 4 8 13 16 20 

2.00 33 7 13  20 24  29 3 7 12 16  23 

3.00 50 7 14  23 29  38 3 6 12 16 25 

5.00 83 7 15 26 33 47 3 6 11 16 26 

10.00 161 7 15 27 36 55 2 6 11 15 26 

100.00 1540 7 16 29  39 64 2 5 10 15 26 

(10-27)* (5-14) (18-21) (10-25) (10-26) (10-27) (5-14) (8-21) (10-25) (10-26) (10-27) 

(15-42) (4-11) (7-20) (10-28) (12-32) (14-38) (3-6) (5-12) (8-20) (9-24) (12-32) 

(17-54) (4-11) (7-22) (11-33) (13-39) (16-48) (2-5) (4-11) (7-19) (9-25) (12-37) 

(24-86) (4-11) (7-24) (12-39) (14-48) (19-64) (2-4) (4-10) (7-19) (9-26) (13-41) 

(39-154) (4-12) (8-28) (13-47) (16-61) (23-87) (2-4) (4-10) (6-20) (8-28) (14-46) 

(72-306) (4-12) (8-28) (13-51) (17-68) (26-103) (2-4) (3-9)  (6-19) (8-27) (13-46) 

(656-2815) (3-12) (7-28) (13-51) (17-70) (28-114) (1-3) (3-8) (5-17) (7-25) (13-45) 
i = 0.483 

1 .oo 14 7 11 13 14 14 7 11 13 14 14 

1.57 23 6 11 16 18 21 4 7 11 14 18 

2.00 29 6 12  18 21 26 3 6 11 14  20 

3.00 42 6 12 20 24  32 3 6 10 14 21 

5.00 73 6 14  23 29 42 2 5 10 14 23 

10.00 140 6 14 24 32 49 2 5 10 14  23 

100.00 1343 6 14 25 34 56 2 5 9 13 23 

(9-21) (5-11) (7-16) (9-19) (9-20) (9-21) (5-11) (7-16) (9-19) (9-20) (9-21) 

(13-32) (4-8) (7-15) (9-22) (11-25) (12-29) (2-5) (4-10) (7-15) (8-19) (11-25) 

(16-46) (4-9) (7-18) (10-28) (12-33) (15-41) (2-4) (4-9) (7-17) (9-22) (12-31) 

(23-70) (4-10) (7-20) (11-32) (14-40) (18-53) (2-4) (4-9) (6-16) (8-22) (13-34) 

(35-126) (3-10) (7-23) (12-39) (15-50) (21-71) (2-3)  (3-8) (6-16) (8-23)  (12-39) 

(66-235) (3-10) (7-22) (12-40) (16-53) (24-80) (2-3)  (3-7) (5-15) (7-21) (12-37) 

(603-2373) (3-10)  (7-23) (12-43) (16-59) (26-97) (1-3)  (3-7)  (5-15) (7-21) (12-38) 

m is the number of loci estimated for the given z value. 
Values in brackets are 95% confidence intervals. 

ations with the  current selection lines, differing almost 
twice that  reported in 1949 (J. W. DUDLEY, personal 
communication).  Previous estimates of the  number  of 
genes by different  methods  (“Student”  1934; DUDLEY 
1977) all indicate that  the  number of loci responsible 
for  the selection response  might  be very large. It 
would be  an  interesting result if the  current selection 
lines are crossed to estimate the  number of genes by 
the present  method. Since the selection lines differ 
widely and  the  number of chromosomes is not small, 
this experiment is  well suited for estimation of the 
number  of loci provided sample sizes can be  made  large. 

DISCUSSION 

Estimation of the  number of genes responsible for 
the difference in quantitative  characters  between two 
extreme populations is a long standing  problem. At- 
tempts to deduce  the genetics of the differences be- 
tween divergent  populations that  are crossed, from 
analyses of F1, FP and backcrosses, have been frus- 

trated by the large  number  of possible parameters: 
the number, effects and frequencies of alleles, linkage, 
degrees of dominance and possible kinds of epistatic 
effects. Consequently, WRIGHT’S method,  though sim- 
ple, provides seriously biased estimates of the  number 
of loci.  Unless the bias of the estimates can  be reason- 
ably corrected,  information  from  the estimates is very 
limited. 

In this paper,  an  attempt is made to dissect the 
effects of different genetic complications (except 
epistasis) on  the estimation of the  number of genes. 
Linkage effects are summarized by the  mean recom- 
bination frequency, which is estimable, and can be 
corrected. Unequal effects of alleles are also summa- 
rized in a  parameter z which measures the variability 
of  allelic effects among loci. Limited data indicate that 
this parameter may be  larger  than 2. It is difficult to 
set an  upper  bound  on this parameter because it is 
difficult to define precisely what is meant by the 
number of genes involved. It is helpful and informa- 
tive to estimate the  number of loci  which account for 
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most  of the genetic variation. Under certain circum- 
stances,  estimates  of this number  tend to be independ- 
ent of the distribution of  allelic  effects,  showing that 
the concept has a nice invariant property. Another 
consequence  of  this relative invariance (particularly 
for z 3 2) is that estimates  of m for  a given  value  of z, 
say 3, may be statistically equivalent to estimates of m 
with a different value  of z, say 10, for certain appli- 
cations. 

The effects  of leading loci  can  also be estimated by 
the  current method. This is very important and di- 
rectly related to  current efforts of mapping leading 
quantitative trait loci (QTLs). Knowledge  of  likely 
magnitudes of effects of the leading loci gained by 
applying the  current method can help to design  map- 
ping experiments and  to  determine sample  sizes 
needed to find the  QTLs. 

Dominance effects can  also  be corrected for if genes 
are fixed in the  appropriate populations. The effects 
of  epistasis are more difficult to handle as  they  involve 
too many parameters and it is hard  to identify the 
patterns of interaction in a data set.  Scaling the data 
is a common practice to minimize the effects  of  pos- 
sible interactions, but  that does not necessarily  mean 
that  the interactions can be scaled out. 

WRIGHT’S estimator has  also a serious sampling 
variance problem. This is particularly so for  the pro- 
posed  modified estimator. Remedies for the problem 
include choosing  only those populations or lines  which 
differ by many (say 10) phenotypic standard deviations 
for estimating the  number of genes (or using strong 
divergent selection to  create highly divergent lines); 
keeping large sample  sizes  (say >200 for most popu- 
lations); replicating estimations if possible; and using 
other  better methods to estimate cr: such  as  variance 
component analysis on families. The problem is  likely 
to be more severe for those organisms  which  have 
tight linkage. If the linkage effect is a major problem, 
u: may  have to be estimated from other sources  with 
linkage  disequilibrium  significantly reduced (ZHC). 
Because  of these problems, the method is not recom- 
mended for general use  unless  these  specified condi- 
tions are met. 

Finally it should be pointed out  that  the  number of 
loci  discussed  in  this paper is not the number of  loci 
which are capable  of contributing to  the genetic vari- 
ance via mutation. The latter  number is relevant to 
many theoretical models  involving mutation. The re- 
lationship between the number of  loci  which contrib- 
ute to the genetic variance  within a  current population 
or the difference between  two current populations 
and  the number of  loci  which are capable  of contrib- 
uting to the genetic variance via mutation depends on 
the mechanisms  which  maintain genetic variation 
within populations and  the mechanisms  which  cause 
differentiation between populations. In  any  case, the 

latter number is substantially larger and should not 
be confused  with the number discussed  in  this paper. 
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Drosophila data for this study. The manuscript was greatly im- 
proved by comments from TRUDY MACKAY, DAVID HOULE, c. 
CLARK COCKERHAM, BRUCE WEIR, Russ LANDE and ANDY CLARK. 
This investigation was supported in part by research grant GM 
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APPENDIX A 

The bias of the  estimator: The analysis  of  Equa- 
tions 2, 3 and 4 is based on taking the expectations 
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on  the  numerators  and  denominators of the estimates 
rii and rii* separately. As a  result, the  ratio of the 
expectations may be  unbiased, but  the expectation of 
the  ratio  (the  estimate rii *) is biased. Taking 

2 A i  + (2 - 1)(h - 1 )  - - X m* = - 
1 - r i i (1  - 2 3  Y 

the bias  in h* can be  approximated by a Taylor 
expansion with respect to x and y as 

Bias(rii*) = g(h* - m )  

mVarb) - Cov(xy) e 
[ g ( Y  )I' 

( 1  - 2 3 [ ( m -   1 ) ( 1 - 2 $ + i l a i + 4 ( m -  ~ > ( a $ + ~ ~ ) a ;  
[ 1 -&( 1 - 2912 

2 2 

= 

- - ( 1  - 2 3 [ ( m - 1 ) ( 1 - 2 3 + 2 1 a $  
[ l   - r i i ( 1 - 2 3 ] 2  

as the  term involving a: is very small, where .$F 
denotes  expectation. This approximation gives a bias 
generally of about m / 2 0 .  However, since the  approx- 
imation  underestimates the bias, the real bias must be 
larger  than  that. Simulation studies  indicate that,  de- 
pending on values of parameters  (particularly m),  this 
bias is generally about m / 1 0 .  

APPENDIX B 

Sampling  variance of A The mean recombination 
frequency, P, for m loci is defined  as  an average of 
recombination  frequencies  among m(m - 1 ) / 2  distinct 
gene pairs. Let rv be the recombination  frequency 
between loci i andj,  mk, defined as a  random variable, 
be the  number of  loci on  the kth chromosome with 
the  genetic  length ck, C = XEl ck and m = CEl mk 
where M is the  number of chromosomes. Then 

m h  2r i .  J + A( - M mk(mk l ) )  
P =  

k=1 i<j m(m - 1 )  2 m(m - 1 )  

Under  the assumption of uniform  distribution  of loci 
in a  genome, the  expected  recombination  frequency 
between two loci located on  the kth chromosome is 

and  the  expected mean recombination  frequency 

among m loci  is then 

mk(mk - I)[%(?-) - " I )  
2 k=l  m(m - 1 )  

where goutside  the bracket  denotes for expectation 
with respect to mk's which are multinomially distrib- 
uted. 

The second moment of mean recombination fre- 
quency is defined  as 

T o  derive  it, let us first consider the second moment 
of recombination  frequency for a  pair of loci on  the 
kth chromosome 

The expected joint recombination  frequency  for three 
genes in two pairs on  the kth chromosome is defined 
as 

Under  the assumption of no interference,  the  joint 
recombination  frequency  between  four  genes in two 
pairs on the same chromosome is however independ- 
ent, i . e . ,  

[ I  - e-2(x4-x3)] d x l   d x p   d x s   d x 4  

= [ c&(r)I2, 

so is the  joint frequency  for two gene  pairs involving 
genes on  different chromosomes. Thus 
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+ 2(m - 2)(m - 3) c e,:,?[ %(?-)-;I[ %x?-)-;] 
m(m- 1 )  k<l 

The value  of this sampling  variance is generally small. 
Depending on M and C, the values  of u! is on the 
fourth decimal point for m = 10, and on the sixth 
decimal point for m = 100. 

APPENDIX C 

This appendix lists the phenotypic means and vari- 
ances  of parental, hybrid and backcross populations 
with dominance and  no epistasis. The parental popu- 
lations are assumed to be in Hardy-Weinberg and 
linkage equilibrium. The total phenotypic variance in 
each population is assumed to be the sum  of the 
genetic variances  of m loci,  plus a noninheritable 
environmental variance, u:, supposing that genetic 
and environmental effects are independent. Thus for 
the high (Ph)  population 

Ph = P + pihai[l + ( 1  - pih)di] 
i 


