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Independence case

As a procedure that combines the features of Fisher’s product method and Wilkinson’s truncation

method, we suggest the use of the product W of all those pi values that do not exceed some fixed

value τ :

W =
L∏
i=1

p
I(pi≤τ)
i (1)

where I(·) is the indicator function and L is the number of tests.

Useful aspects of the TPM test include the following:

1. Experience shows that the ordinary Fisher product test loses power in cases where there are

a few large p-values. This can happen when tests are one-sided, with noncentrality in the

“wrong” direction, or when there are a predominance of near-null effects. By truncating,

these large components are removed, thereby providing more power, much like a “trimmed

mean” gains efficiency in the presence of outliers [Huber, 1977].

2. A natural, although arbitrary choice for τ is α (commonly 0.05). This allows easy use of the

test in cases where only p-values for “statistically significant” results are given; it also allows

estimation of “file drawer effects” in meta-analysis as shown below.

3. The truncated combination emphasizes smaller p-values, somewhat like the Simes and Šidák

methods. However, Simes and Šidák p-values can never be smaller than p(1), the smallest

p-value, whereas the TPM p-value will be smaller than p(1) when there are several small

and reinforcing p-values in the set. In genome scans, this case is likely to occur in a local

neighborhood of a susceptibility gene.

4. One can incorporate weights into the analysis as in Good [1955], as W =
∏L
i=1 p

wiI(pi≤τ)
i ,

thereby allowing studies or tests with more precision to play a larger role.
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5. Isolation of individual significances is possible (and computationally feasible even for large

numbers of tests as we show below in “Closed testing with Truncated Fisher Test”), through

the closure principle of Marcus et al, [1976] when using the TPM test.

Consider the case when all p-values are independent. Under the null hypothesis HT , the dis-

tribution of W for w < 1 can be evaluated by conditioning on the number, k, of the pi’s less than

τ :

Pr(W ≤ w) =
L∑
k=1

Pr(W ≤ w | k) Pr(k)

=
L∑
k=1

(
L

k

)
(1− τ)L−k

×
(
w
k−1∑
s=0

(k ln τ − lnw)s

s!
I(w ≤ τk) + τkI(w > τk)

)
(2)

When L is large (> 1,000 tests, assuming double precision calculations), the probability in (2) should

be computed through a Monte Carlo algorithm described in the next section. The derivation of

equation (2) is given below (“Distribution of W” section). At one extreme, setting τ = min p results

in Šidák’s correction. At the other extreme, when τ = 1, equation (2) provides Fisher’s combined

p-value. Thus, the method we describe here is “intermediate” between combination and individual

adjustment techniques. Note that setting τ = 1 provides a way of calculating Fisher’s combined

p-value directly. Instead of looking up the cumulative probability from the tail of a chi-square

distribution, it can be obtained as

Pr(W ≤ w) = w
L−1∑
s=0

(− lnw)s

s!
(3)

C++ code for calculating the TPM p-value is available at

http://statgen.ncsu.edu/zaykin/tpm/ . An executable for a specific OS can be requested from

Dmitri Zaykin (zaykind@niehs.nih.gov).

Distribution of W

When HT is true and τ < 1, the number of small p-values (k) has a binomial distribution, and pi’s

are observations from the uniform (0, 1) distribution, truncated at τ (i.e. the distribution of pi’s is

uniform on (0, τ)).
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Given k, the conditional distribution of the product (W ) can be calculated directly. Let

X1, ..., Xk be independent uniform (0, τ) random variables. Consider the transformation:

Z1 = X1

Z2 = X1X2

...

Zk = X1X2...Xk

with inverse

X1 = Z1

X2 = Z2/Z1

...

Xk = Zk/Zk−1

The Jacobian of the transformation (J) has the following structure:

∂xi/∂zj =



1 i = j = 1

1/zi−1 i = j;≥ 1

−zi/z2
i−1 j = i− 1

0 otherwise

Therefore

| J |=
k−1∏
i=1

1/zi

and the joint density is

f(Z) =
1

τk
∏k−1

i=1 zi

Integrating out z1 through zk−1 from the joint density gives the conditional probability, P (W ≤

w | k):

Pr(W ≤ w | k) =
∫ w

0

[∫ τk

t

∫ τk

zk−1

...

∫ τk

z2

∏k−1
i=1 dzi

τk
∏k−1
i=1 zi

]
dt

=
∫ w

0

(ln τk − ln t)k−1

(k − 1)! τk
dt (4)
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Then the unconditional distribution is found as follows:

Pr(W ≤ w) =
∫ w

0

L∑
k=1

(ln τk − ln t)k−1

(k − 1)! τk

× I(ln τk > ln t)

(
L

k

)
τk(1− τ)L−kdt (5)

The probability calculated in (5) corresponds to the combined p-value. After τk in (5) is canceled,

this probability is

Pr(W ≤ w) =
∫ w

0

L∑
k=1

(k ln τ − ln t)k−1

(k − 1)!

× I(τk > t)

(
L

k

)
(1− τ)L−kdt (6)

or equivalently

Pr(W ≤ w) =
L∑
k=1

(
L

k

)
(1− τ)L−k

(k − 1)!

[∫ w

0
(k ln τ − ln t)k−1

× I(τk > t)dt
]

(7)

Provided τk > t, the integral in (7), which we denote by Ik is:

Ik =
∫ w

0
(ln τk − ln t)k−1dt (8)

= (ln τk − ln t)k−1t|w0

−
∫ w

0
td[(ln τk − ln t)k−1] (9)

= w(ln τk − lnw)k−1

− (k − 1)
∫ w

0
t(−1

t
)(ln τk − ln t)k−2dt (10)

= (k − 1)Ik−1 + wA(τ, k, w)k−1. (11)

where A(τ, k, w) = k ln τ − lnw. Since I1 = w, then

Ik = (k − 1)!

[
w + w

k−1∑
s=1

A(τ, k, w)s

s!

]
(12)

= w(k − 1)!
k−1∑
s=0

A(τ, k, w)s

s!
(13)
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Therefore,

Pr(W ≤ w) = w
L∑
k=1

(
L

k

)
(1− τ)L−k

(k − 1)!
(k − 1)!

k−1∑
s=0

A(τ, k, w)s

s!
(14)

= w
L∑
k=1

(
L

k

)
(1− τ)L−k

k−1∑
s=0

A(τ, k, w)s

s!
(15)

= w
L∑
k=1

k−1∑
s=0

(
L

k

)
(1− τ)L−k

A(τ, k, w)s

s!
(16)

Closed testing with Truncated Fisher Test

Adjustments for subsets of hypotheses and individual adjustments are available through the ap-

plication of the closure principle of Marcus et al. (1976). Generally, the procedure considers all

possible combination hypotheses obtained via the intersection of the set of individual hypotheses of

interest. If an individual hypothesis and all intersections that contain it as a component are rejected

by an appropriate α-level test, then the closure principle states that the given hypothesis can be

also rejected, at the level α. The closure procedure controls the family-wise error rate (FWER)

strongly, meaning that FWER ≤ α regardless of which subset of null hypotheses happens to be

true (Hochberg and Tamhane, 1987). The total number of combination hypotheses (Nh) is

Nh =
L∑
i=1

(
L

i

)
= 2L − 1 (17)

which grows quickly with L and often limits applicability of the method.

Fortunately, this is not the case for the TPM test. Noting that (2) is an increasing function

of L and a decreasing function of W , we see that, among all intersections of a given size s (where

s ≤ L) that include Hi, only the combination that includes Hi and the remaining s − 1 largest

p-values needs to be tested. Thus, significance for any given hypothesis can be determined using

L tests; and when all L component tests are considered, the maximum number of evaluations is

L2. However, many of these evaluations are redundant, and in practice the number is less than

L2. In some cases, e.g., with the Šidák combined tests, the number of evaluations is as small as

L. To illustrate this argument, consider the case when τ = 1. Then for the ordered set of pj ’s

(j = 1, ..., L) the adjusting procedure for any subset of p-values, Pi, such that p(i) is the largest
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p-value in the set, is as follows. Compute (3) for most stringent subsets:

{Pi, p(L)}

{Pi, p(L), p(L−1)}

{Pi, p(L), p(L−1), p(L−2)}

...

{Pi, p(L), p(L−1), p(L−2), ..., p(i+1)}

The adjusted p-value for the subset Pi is given by the maximum of these values. Many subsets,

such as, for example, {Pi, p(L−1)} do not need to be considered, because they will yield p-values

smaller than the one for {Pi, p(L)}.
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