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Abstract

With the recent advances in high-throughput genotyping techniques, it is now possible to

perform whole-genome association studies to fine-map causal polymorphisms underlying im-

portant traits that influence susceptibility to human diseases and efficacy of the drugs. Once

a genome scan is completed the results can be sorted by the association statistic value. What

is the probability that true positives will be encountered among the first most associated

markers? When a particular polymorphism is found associated with the trait, there is a

chance that it represents either a ”true” or a ”false” association (TA vs. FA). Setting appro-

priate significance thresholds have been considered to provide assurance of sufficient odds

that the associations found significant are genuine. However, the problem with genome scans

involving thousands of markers is that the statistic values of FA’s can reach quite extreme

magnitudes. In such situations, the distribution corresponding to TA’s and the most ex-

treme FA’s become comparable and significance thresholds tend to penalize TA’s and FA’s

in a similar fashion. When sorting between true and false associations, it becomes important

what is the ”typical” place (i.e. rank) of TA’s among the most significant outcomes, ordered

by the association statistic value. The distribution of ranks that we study here allows cal-

culation of several useful quantities. In particular, it gives the number of most significant

markers needed for a follow-up study to guarantee that a true association is included with

certain probability. This can be calculated conditionally on having applied a multiple test-

ing correction. Effects of multilocus (e.g. haplotype association) tests and impact of linkage
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disequilibrium on the distribution of ranks associated with TA’s is evaluated and can be

taken into account.
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Introduction

Continuous efforts to characterize genetic contributions to human diseases led to identifi-

cation of many susceptibility genes. Mapping of genes with well pronounced effects, such

as involved in certain types of breast cancer, Alzheimer’s disease and cystic fibrosis are ex-

amples of remarkable success. However, mapping complex diseases is generally complicated

and many studies fail to replicate. Risch and Merikangas (1996) gave recommendations for

sample sizes required to detect genetic effects of a specified size with certain power, 1 − β.

If an association genome scan contains L markers, the corrected 5% type-I error rate is

α = 0.05/L, and the required sample size can be calculated for a normally distributed test

statistic as N = (Zα−σZ1−β)2/(2µ2), where µ, σ are the parameter values under the hypoth-

esis of association, HA and Zα, Z1−β refer to α and 1−β quantiles of the normal distribution

(Risch and Merikangas, 1996). When high power at the genome-wide α-level can be assured,

that will provide good odds that the most significant results represent actual associations.

An important question that has not been adequately addressed so far is the ranks of

true associations. Distributions of ranks are particularly important in designing the follow-

up studies and deciding how many markers are necessary to consider in a follow-up study

in order to capture all true associations with a high probability (Satagopan et al., 2002).

Consider the following study as an example. Ozaki et al. (2002) established association

of an SNP in the lymphotoxin-α gene with susceptibility to myocardial infarction. In a

genome scan of 65,671 SNPs the actual association was originally found to have a p-value of
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0.0022, being less significant than over 200 spurious associations that later failed to replicate.

These included six false effects with p-values below 10−5 and one false effect with p < 10−6.

Is it a typical outcome – or would we rather expect genuine associations to be the front

runners? Would TA’s be usually ranking first among results that passed a ”multiple testing

correction”? The genome scan of Ozaki et al (2002) included 94 cases and 658 population

controls. Their larger follow-up study determined the relative risk of about 1.6 associated

with one of the genotypes at the putative associated SNP. An approach that we describe

here allows us to estimate that there was only a 14% chance that the association with such

an effect would rank among the first 200 most significant results. To cover such an effect

with only 50% probability in a genome scan with 65,671 SNPs, one would need to examine

over 3400 of the most significant results – a surprisingly high number. Even higher numbers

are needed to cover the TA with certainty that is higher than 50%. Here we describe an

approach that allows such calculations.

A simplified motivating description of the problem studied in this article is as follows.

Suppose there is a single TA with a specific effect size, which could be measured by the

penetrance value of a susceptibility allele. Given a fixed sample size, there is a certain

probability (P ) that the association test statistic calculated at this marker will exceed a given

value, Z. However, as the total number of markers (L) increases, the largest test statistic

among L false associations will eventually have a higher chance than P to exceed Z. In other

words, the distribution associated with the the smallest ”false” p-value will eventually become

more skewed toward zero as L increases. In such situations, multiple testing corrections
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cannot distinguish among true and false associations and justly penalize the false ones. As a

result, the position of TA’s among results sorted by a measure of association or significance

is not substantially affected (in a subset of experiments that passed the correction). Thus,

outcomes of an association genome scan can be thought of as realizations of a stochastic

experiment in which statistic values representing TA’s and FA’s compete in the magnitude of

the value they are able to attain. Whichever statistic values ranked first may be associated

with the highest odds of representing the TA’s, and corresponding markers may become

candidates for an independent follow-up study. Considering recent recommendations calling

for relatively large (100K–200K) numbers of markers (Goldstein et al., 2003) this becomes a

problem of extensive multiple testing.

Traditional way to address the multiple testing issue is to establish significance thresholds

that preserve probability of making a certain proportion of claims under the situation of

”complete null” (i.e. when all markers represent FA’s). Lander and Kruglyak (1995) came

up with explicit recommendations for significance thresholds that are appropriate for linkage

studies where the correlation between adjacent markers is high and extends throughout long

genetic distances. Some issues with the type-I error control approach are discussed below and

its effect on the distribution of ranks is investigated. Multiple testing corrections to assure

type-I error control require a statistic value (or equivalently a p-value) to pass a certain

threshold to be declared ”significant”. The effect of this is merely a ”truncation” where an

entire experiment (i.e. genome scan) could arguably be regarded a failure if none of the

markers exhibit the threshold significance. We study the effect of such truncation on the
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relative order of ranks of true and false associations by restricting attention to the results

among the experiments that pass the significance threshold. In a single given experiment,

corrections such as Bonferroni do not change the order of results and the original ranks.

However, the distributional characteristics of ranks will change for a random experiment

given that some of the tests in that experiment have passed the correction. In other words,

the distribution of the ranks is generally different for a subset of genome scans with some

significant results, compared to all genome scans with and without significances.

A brief summary of our findings is as follows.

1. Investigation of relative TA and FA ranks allows to treat the multiplicity problem in a

useful way that is complementary to more traditional type-I error and false discovery

rate approaches. We find that in large-scale association genome scans, TA’s are not

likely to result in the largest corresponding association statistic values. This is in part

due to small effect sizes associated with complex traits and corroborates concerns about

the linkage disequilibrium (LD) mapping outlined in Terwilliger and Weiss (1998).

2. Multiple testing corrections do not have a drastic impact on the distribution of ranks,

unless the power is high. Thus, procedures that preserve type-I error rate or the

unconditional false discovery rate (FDR) are insufficient to guarantee that the most

significant results represent TA’s. Our approach helps to clarify sources of the appar-

ently low chances of replication for originally found associations (Terwilliger and Weiss

1998; Vieland, 2001; Ioannidis et al., 2001; Lohmueller et al., 2003; Lucentini, 2004).
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3. The effect of even strong LD on TA ranks is small to be of substantial importance in

genome-wide association studies. This finding is in contrast with the statistical be-

havior in linkage analysis where the correlation extends throughout large chromosomal

regions, greatly reducing the effective number of tests.

4. Dependency among the association test statistics due to block structure of LD has a

similar small impact.

5. Multilocus approaches such as haplotype-trait association methods confer additional

advantage in terms of the ranks of TA’s. This finding is independent of previous

arguments proposed in favor of haplotype analysis.
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Ranks of true and false positives

It is possible to give explicit recommendations for genome-wide significance thresholds that

provide appropriate type-I error control. However, type-I error control only considers the

situation of the complete absence of actual associations. On the other hand, the question

of practical importance is what are the chances that a particular test is a true association.

Morton (1998) pointed out that it is desirable to assure high reliability (ρ) – the proportion

of true discoveries among all, ”true” and ”false” discoveries, an essentially Bayesian concept.

Reliability relates to the frequentist version of ”false discovery rates” (FDR) of Benjamini

and Hochberg (1995) as FDR = E(1− ρ) Pr(T +F > 0) = E {F/(T + F)}Pr(T +F > 0),

where T and F are the numbers of true and false associations that were declared significant.

FDR is the average proportion of false positives across multiple studies, including those

with no discoveries, and the reliability is approximating the expectation, E {T /(T + F)},

among the studies where one or more rejections have been made. The value Pr(T +F > 0)

decreases with the overall number of tests conducted within a study, and increases with

power to detect TA’s. The power is typically highly variable. Genome scan marker sets

consist of common SNPs spread out throughout the genome. Actual causal polymorphisms

are unlikely to be captured by any of the actual markers in the set. Instead, the hope is that

the sufficient marker density may provide high LD with the causal loci. In this case some of

the markers surrounding the functional polymorphisms can be viewed as proxies for TA’s.

However, the population-specific nature of LD, its high variability as well as the uncertainty
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in allele frequencies make it difficult to specify the magnitude of the association with a

marker. Although high power at the genome-wide α-level will provide good odds that the

most significant results represent actual associations, the actual power to detect associations

in the vicinity of causal variants is likely to be low and indeterminate in practice. Expected

conditional FDR, or the proportion of false discoveries among all discoveries, E(1− ρ), can

be related to the posterior probability of the null hypothesis (Storey, 2002). This approach is

most straightforward in situations where the proportion of TA’s is relatively high so that the

distribution of mixture of TA’s and FA’s can be characterized empirically and distinguished

from the distribution of FA’s. More generally, it involves specifying the prior TA probability

(expected proportion of TA’s among all studied markers) as well as the power characteristics

of markers representing the TA’s. We study the problem in terms of the stochastic ordering

and ranks of statistic values associated with true and false positives. Instead of calculating

the probability of the null hypothesis (H0) given a p-value, we compute the number of most

significant results needed to contain a TA with a given confidence.

In the case of independence between genetic markers, the rank probabilities can be derived

analytically. Next section describes necessary theory and Monte-Carlo approach used to

approximate the analytic results as well as to model ranks under more complex situations of

dependency due to LD.
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Theory on stochastic ordering of true and false positives

To model the distribution of ranks, we start with the joint distribution of p-values corre-

sponding to true and false associations, working in terms of order statistics that come from

distinct densities corresponding to TA and FA p-values. In this regard, p-values are used

as a ranking measure reflecting the degree of association. Equivalently, the problem can be

described in terms of an arbitrary association measure used to order results. Integrating the

joint distribution allows calculating quantities such as the probability that the largest true

association p-value is smaller than the i-th smallest false association p-value, as well as the

expected ranks for the true associations. These quantities can be calculated either uncon-

ditionally or conditionally upon a multiple testing correction and require the assumption of

independence. A diffusion process is used to extend the method allowing for dependence

due to LD between genetic markers. Consider a continuously distributed test statistic for

association, Ti, at the marker i, with the corresponding p-value, pi = 1−F0(Ti), where F0(·)

is the cumulative distribution function (CDF) of Ti, assuming the null hypothesis, H0. This

is the correct CDF for markers representing FA’s, but the actual CDF of the test statistic

for TA’s is denoted by FT (· | γ). In the case of a χ2-distribution, γ is the non-centrality

parameter. If Ti are normally distributed, γ refers to the shift in the mean of the distribution

caused by the association with the trait. Markers are ordered in terms of p-values, so that

{p1 ≤ p2 ≤ ... ≤ pL}, where L is the overall number of markers in the study. For the FA’s

the CDF of p-values is P0(p) ≡ Pr(P ≤ p) = p, where P, p denote the random variable and
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its value respectively. For the TA’s we have, assuming a one-tailed test

PT (p | γ) ≡ Pr(P ≤ p) = 1− FT (F−1
0 (1− p) | γ) (1)

For illustrative purposes, we will now assume a normally distributed Ti, although calculations

are similar for other continuous distributions. The results will also be presented assuming

a χ2-distribution which is more relevant in exploratory analysis so that the direction of

the effect is not considered. With the normal Ti, equation (1) becomes PT (p | γ) = 1 −

Φ (Φ−1(1− p)− γ), where Φ(·) is the normal CDF, and γ =
√

Nµ/σ is the power parameter

that depends on the sample size, N , effect size, µ, and the variance, σ2. The normal test

statistic p-value density is πT (p | γ) = ∂PT (p|γ)
∂p

=
φ(Φ−1(1−p)−γ)

φ(Φ−1(1−p))
, where φ(·) is the normal

density function. Note that P0(p) = PT (p | γ = 0) = p, and πT (p | γ = 0) = 1 –

i.e. p ∼ uniform(0, 1) under H0. Let Xi be the random variable corresponding to the i-

th smallest FA p-value. Denote the most significant TA among m true associations, with

its random p-value by Y ≡ Y1. Consider events: A ≡ Y < Xi; B ≡ min(X1, Y ) ≤ δ;

BC ≡ min(X1, Y ) > δ; where Pr(B) + Pr(BC) = 1, and δ is a multiple-testing adjusted α-

level, e.g. Šidak’s adjusted δ is 1− (1− α)1/L. For large L this gives ≈ α/L, the Bonferroni

correction. If true and false effects are independent, the joint density function of Xi and Y

is (dropping conditioning on γ and other parameters from the notation for simplicity)

πXi,Y (x, y) = πXi
(x) πY (y)

=

{
xi−1(1− x)s−i

B(i, s− i + 1)

} {
φ (Φ−1(1− y)− γ)

φ (Φ−1(1− y))
m

[
Φ

(
Φ−1(1− y)− γ

)]m−1
}

(2)
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where the number of FA’s is s = L − m, B(·) is the beta function, the first ratio is the

beta(i, s− i) distribution of the i-th smallest false p-value, and the ratio of normal densities

is the density for the TA p-value distribution, assuming independence and common power

characteristics for each of m associations. The problem is to find Pr(A | B) = Pr(Y ≤ Xi |

(Y or X1) ≤ δ). First consider m = 1. Pr(A | B) is the probability that the true association

ranks below the i-th most significant FA p-value. It is found as

Pr(Y ≤ Xi | (Y or X1) ≤ δ) =
Pr(A)− Pr(A ∩BC)

1− Pr(BC)

=

∫ 1
0

∫ 1
y πXi,Y (x, y) dx dy −

∫ 1
δ

∫ 1
y

∫ x
δ πX1,Xi,Y (z, x, y) dz dx dy

1−
∫ 1
δ

∫ 1
δ πX1,Y (x, y) dx dy

(3)

where

πX1,Xi,Y (z, x, y) =

{
s! (x− z)i−2(1− x)s−i

(i− 2)!(s− i)!

} {
φ (Φ−1(1− y)− γ)

φ (Φ−1(1− y))

}
(4)

The first term in (4) is the joint distribution of X1 and Xi, independent of Y with density

given by the second term. Alternatively, we would like to find a value of i such that Pr(A | B)

is equal to a certain value, such as 95%. This is found by computing (3) over the range of

i. The resulting value of i is equivalent to the number of most significant associations that

will contain the actual TA with 95% probability. Equation (3) is measuring the probability

that the true positive will rank right below the i-th most extreme false positive. This

probability is conditional on at least one p-value satisfying the multiple testing threshold, δ.

An unconditional version is obtained by setting δ = 1. Satagopan et al. (2002) considered

the unconditional ranking in the problem of optimizing the total number of typed markers for
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two-stage association mapping study designs. The ”average” ranking of Y , or its expected

rank is given by

E {Pr(A | B)} = L−
L∑

i=1

Pr(Y ≤ Xi | (Y or X1) ≤ δ) (5)

To modify equation (3) allowing for the calculation of probability that all TA’s will rank

below i, we need the distribution of the largest TA p-value, among (m > 1) TA’s:

πYm(y) =
φ (Φ−1(1− y)− γ)

φ (Φ−1(1− y))
m

[
1− Φ

(
Φ−1(1− y)− γ

)]m−1

as well as the joint distribution of the maximum and minimum p-value for TA’s:

πY1,Ym(u, v) = m3(m− 1) [1− PT (u)]m−1PT (v)m−1

× ([1− PT (u)]m + PT (v)m − 1)
m−2

πT (u)πT (v)

Probability that all true positives will rank before the first i false positives, conditional on a

multiple testing correction is:

Pr(Ym ≤ Xi | (Y1 or X1) ≤ δ)

=

∫ 1
0

∫ 1
y πXi

(x)πYm(y) dx dy

1−
∫ 1
δ

∫ 1
δ πX1(x)πY1(y) dx dy

−
∫ 1
δ

∫ 1
ym

∫ ym

δ

∫ xi
δ πX1,Xi

(x1, xi)πY1,Ym(y1, ym) dx1 dy1 dxi dym

1−
∫ 1
δ

∫ 1
δ πX1(x)πY1(y) dx dy

(6)

The expected rank of Ym is obtained in the same manner as in (5).

These equations can be evaluated by numerical integration or more conveniently via

Monte-Carlo simulations. Simulations are set up as follows. FA’s are sampled from the

uniform(0,1) distribution. The TA p-value distribution function, PT (·), can be inverted to
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sample each of m true association p-values. For example, assuming a normally distributed

test statistic, {pi} are obtained as pi = 1−Φ (Φ−1(ui) + γ), where ui is a uniform(0,1) random

deviate. With a chi-square test statistic, p-values are generated as pi = 1−Ψd,0

(
Ψ−1

d,γ(ui)
)
,

where Ψd,γ(·) is the χ2 CDF with d degrees of freedom and the non-centrality parameter

γ. Once all L = s + m of p-values are generated, they are ordered and their ranks are

recorded. This consists of a single simulation experiment. Probabilities such as in (3) are

approximated by the proportion of times across multiple experiments where Y had ranked

below the i-th false positive. Parameter γ governs the power associated with individual TA’s.

For example, γ=3.29 with the normally distributed test statistic corresponds to the 95%

probability of detecting true effects with a 5%-level test, and can be obtained as Φ−1(1 −

0.05) + Φ−1(0.95) ≈ 3.29. Such simulations are easy to set up and they become more

convenient than the numerical integration when L is large. Although we considered a fixed

value of m for the calculations to be more transparent, in principle this value can be allowed

to have a distribution allowing for uncertainty associated with m.

In this study, we applied the Monte-Carlo approach to obtain numerical results taking the

number of simulations to be at least 50,000. Simulation approach is especially useful to study

the effect of correlations between p-values. The positive dependence, such as dependence due

to LD is expected to reduce the effect of the total number of false effects on the distribution

of ranks of TA’s. Assuming a multivariate normal distribution for the test statistic and

the exponential correlation decay with distance, the joint distribution of the test statistic

under H0 over neighboring markers can be described by the Ornstein-Uhlenbeck diffusion
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process, dZ
dt

= −aZ(t) + σξ̃(t), where ξ̃(t) is the white noise term and a, σ2 are the process

drift and the variance parameters. After statistic values (normal scores) are converted to p-

values, sampling from this diffusion process generates correlated p-values with the stationary

uniform (0,1) distribution. The correlation r(Zi, Zj) generated by diffusion closely translates

to the correlation between p-values: r(pi, pj) = 6 arcsin [r(Zi, Zj)/2] /π (Kruskal, 1958).

The largest ratio of r(Zi, Zj) to the correlation between two p-values is π/3 ≈ 1.047, as

r(Zi, Zj) approaches zero. We have also implemented a more realistic model of the correlation

structure allowing for extended blocks of very high LD interspersed with regions of low LD,

by mixing two (high and low correlation) Ornstein-Uhlenbeck diffusions. In reality, p-value

correlations may not be adequately described by the diffusion. Nevertheless, this model

allows to generate substantial correlations with specified decay characteristics and therefore

allow investigation of the effect of correlation on the distribution of TA ranks.
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Results

We considered two basic calculations. The first is obtaining the probability that TA’s are

found among some fixed number (R) of most significant results in a scan (Table 1). The

second calculation is the number of most significant results required to contain TA’s with

some fixed probability (Tables 2–6). Both calculations are performed with or without a

multiple testing correction. Imposing a multiple testing correction results in discarding

experiments that did not pass the significance threshold. Then the ranks are calculated

for the subset of all scans that have passed the correction. Although the ranks do not

change for a single given genome scan, they are expected to improve among the scans that

passed the threshold. This is modeling the expectation of a researcher that genome scans

with multiplicity-corrected, statistically significant results are more likely to represent TA’s,

especially among the tests that passed the correction. The effect of LD on the ranks is studied

for the case of strong LD that is homogeneous across the genome, as well as for the case of

LD that has a block structure. For the case of multiple TA’s, chances of finding some or all

of the effects are evaluated. Finally, the effect of multilocus tests (e.g. haplotype association

tests) is considered and compared to the results obtained for tests based on individual SNPs.

Table 1 shows unconditional and conditional probabilities of finding all m = 3 TA’s among

R most significant results in a genome scan with s=100,000 independent FA’s. We used four

different values of power to detect individual true effects (0.75, 0.85, 0.95, 0.99) assuming the

normal distribution in (1), and compared probabilities under no multiple testing correction
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(δ = 1) with probabilities obtained conditional on at least one p-value satisfying the Šidak

correction, δ = 1−(1−0.05)1/100003. Table 1 indicates that with a multiple testing correction,

the chances that all three true effects are found among R smallest p-values are improved by

only a small amount. With 95% power, we need to consider around 500 most significant

results to bring this probability up to 44%. Multiple testing correction only slightly increases

it to 54%. This improvement would be even less pronounced for adjustments that are less

stringent than Šidak or Bonferroni. Power has the most definite influence on the probability

to find true effects. When the power to find any one of the three true effects in a single

5%-level test is 75%, there is practically no chance of finding all three effects when up to 100

markers are considered. The probability conditional on the multiple testing adjustment is

still small even with R=1000 for this value of power. The effect of the power associated with

TA’s is of great importance. There is considerable improvement in probability to find true

effects when power reaches values of 99% and above. For example, the increase in power from

95% to 99% lowers R from 500 to 50 markers needed for 50% probability of discovery. This

effect is also apparent in Tables 2 and 3. These tables use s=200,000 of FA’s and a single

TA (m = 1) assuming the χ2
(1) distribution for the test statistic in (1). The probability that

this effect is among first R most significant markers is set to 0.95 for Table 2 and to 0.50 for

Table 3. The entries in the tables show the value of R required to satisfy these probabilities.

Dependency among p-values due to LD is added, assuming 200,000 equally spaced markers

with correlation decay characteristics as shown in Figure 1. The correlation shown in Figure

1 corresponds to a quite extensive LD. Generally, high correlation values between alleles at
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two loci (i.e. LD) translate into much weaker correlation between the corresponding p-values

computed for two single-locus tests of association (Nielsen et al., 2004). Tables 2 and 3 show

that unless the power is very high, a substantial proportion of the original 200,000 marker

set needs to be examined to ensure that it contains the TA. The effect of power is most

substantial at values close to 99%. Only at these high power values there is a definite benefit

of a multiple testing correction, in that the rank of the true association lowers to manageable

numbers (e.g. 1671 markers without the correction vs. 70 markers for 99% power and no-

LD entry in Table 2). Since LD usually follows a block structure, additional simulations

were carried out with the mixture of two diffusions. The decay of correlation in blocks and

between the blocks followed the pattern showed in Figure 2, with 25% of SNPs allocated

within the blocks. Proportions of genome regions within blocks have been reviewed by Wall

and Pritchard (2003) for various populations and subsets of genome. The usage of p-value

correlation most closely corresponds to the LD measured by the composite correlation rAB

(Weir, 1996) which translates into a stronger requirement than that of D′ - the gametic or

the composite LD normalized by the bounds on covariance between alleles (Lewontin, 1964,

Hamilton and Cole, 2004, Zaykin, 2004). The coefficient rAB has well-defined statistical

and population-genetic properties. It serves well in contexts of association mapping (Meng

et al., 2003), because high values of rAB imply that an allele at one locus can be regarded

as a proxy for an allele at another locus. This requires dependency as well as the relative

closeness of allele frequencies at both loci.

The block LD parameters were chosen to result in the correlation decay similar to the one
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shown in Figure 1, when averaged across large distances. Results shown in Table 4 indicate

that the block structure of correlation did not substantially affect the outcomes compared

to the results obtained for the monotone decay of correlation with distance. The effect of

dependency among markers has a very small effect on the ranking of TA’s, because of the

local nature of the correlation decay. As far as ranks of true positives are concerned, the

”effective number of tests” is roughly equal to the total number of markers assuming no LD.

It is our experience that in actual genome-wide association studies the average correlations

between association test p-values are smaller in magnitude, with the decay that resembles

the shape used in the present study.

When the number of TA’s is increased, the probability to find all TA rapidly decreases.

For example, with m = 1 and 99% power, the number of most significant markers that contain

the TA with 95% probability is 1671 (with no correction) and 70 (with Šidak correction, Table

1, independence case). When m = 2, the numbers increase to 3969 and 2155, respectively.

With m = 3, they become 6112 and 4573. These calculations assume the same 99% power

for all TA’s, although it is likely that as m increases, the power associated with individual

TA’s decreases.

The probability of finding one or more of TA’s increases with the number of TA’s but

only under the unlikely assumption that the power associated with individual effects does

not decrease. With m = 1 and 78.5% power, the number of most significant markers that

contain the TA with 95% probability is 54233 (with no correction) and 47620 (with Šidak

correction). With m = 3, the numbers become 3165 and 2196, although it could be naively
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assumed that these should correspond to the case with m = 1 and 1 − (1 − 0.785)3 = 99%

power. More results for the case of m = 3 are given in Table 5. The results confirm that

lower power associated with each effect is sufficient to obtain the same probabilities as those

with a single false effect. For example, 80% power associated with each of 3 TA’s results in

similar numbers as that for a single TA with 95% power (for 50% probability of containing

TA’s). It is expected however that given multiple effects the power associated with each of

them will generally be quite low. An assessment of the anticipated decrease in power can be

obtained under a simple model when multiple effects independently contribute to a binary

phenotype. Suppose there are m susceptibility polymorphisms contributing to the trait. If

m = 2 with two corresponding frequencies among the cases, p1, p2, then the frequency of

either one of the susceptibility polymorphisms is pc = p1 + p2(1− p1) = 1− (1− p1)(1− p2).

For simplicity, assume the same common frequency of all polymorphisms among the cases,

p. Then pc = 1− (1−p)m, and conversely p = 1− (1−pc)
1/m. Similar calculation would hold

for the frequency among controls, qc. For a given relative risk pc/qc it is possible to calculate

the expected power associated with any one of these m polymorphisms. Resulting power

lines using the relative risk power formula (equation 7, discussed below) are shown in Figure

3 for pc=0.3 and qc=0.2. The discrepancy is high - nearly 100% power of the compound test

for all three effects has the power of about 85% for the individual effects. In other words it

is difficult to assure that high power for all three effects (e.g. last row in Table 5) is satisfied

in practice.

Genome scan analysis may involve multilocus tests, e.g. statistical tests relating haplo-
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type frequencies with phenotype values. There is a problem of which polymorphisms are to

be included in a particular test. Previously, we investigated power of the “sliding window”

approach where several neighboring polymorphisms are included into the current window

and the overall test is performed (Zaykin et al., 2002a). The total number of tests for the

whole genome scan remains essentially the same although there is additional but very short-

distance correlation between the tests sharing the same polymorphisms. Such multilocus

approaches are advantageous when there are substantial haplotype effects. Nevertheless,

there is the problem of balance between the increase in degrees of freedom (d.f.) associated

with the haplotype tests and the increase in the effect size – no power increase is guaranteed

with the haplotype analysis even if the effects are specifically haplotype-driven. Another

possible advantage of the haplotype analysis is that haplotypes can be in higher LD with

unobserved mutations than the individual SNPs comprising the haplotypes. However, in

such situations haplotype tests rarely result in substantial gain in power. Higher power

compared with tests for individual SNPs can be observed primarily when there are multiple

susceptibility SNPs and the LD is low (Morris and Kaplan, 2002). In our framework, the

major influence of the multilocus (e.g. haplotype) tests on the distribution of ranks is via

the form of the distribution of p-values corresponding to multilocus TA’s. We considered the

situation of block-LD correlated test statistics with eight d.f. that would for example cor-

respond to the overall genotypic test involving two diallelic SNPs, with nine distinguishable

dilocus genotypes. A haplotypic test with three SNPs would have a similar number (seven)

of d.f. Results are shown in Table 6. Although the results are similar to the one d.f. tests
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from Table 4, all eight d.f. ranks are smaller than those for the one d.f. tests (excluding

the situations when the power is high enough that the TA ranks first). The difference be-

tween the one and eight d.f. tests is more pronounced under the multiple-testing correction

(second and fourth columns of the tables). The difference between entries of two tables is

statistically significant (Wilcoxon signed-rank test p-value is 0.0005 for comparing just 95%

entries). The relation between the d.f. (assuming a chi-square distribution of the association

measure) and the distribution of ranks is rather complicated. For a particular quantile of

the p-value distribution the exact relation regarding the optimal d.f. can be based on the

following computation. Let (γ1, γ2, ..., γk) be the non-centrality parameters corresponding to

(1, 2, ..., k) d.f. tests to have the same power (1−β) at a particular α-level. Then i = 1, ..., k

significance levels α∗
i at the quantile q are α∗

i = 1 − Ψdi,0

(
Ψ−1

di,γi
(1− q)

)
, where Ψdi,γi

(·) is

the χ2 CDF with di degrees of freedom and the non-centrality parameter γi. A sample graph

for 80% power tests and the 70% quantile is shown in Figure 4. Note that at 80% quan-

tile the graph would be the straight line at 0.05. In this figure, the four d.f. test appears

“optimal”, as it corresponds to the minimum significance level, however more important is

the relation at smaller quantiles, somewhere in the neighborhood of the smallest expected

p-values corresponding to false effects (i.e. around the Bonferroni level). At such level (with

200K tests) the “optimal” d.f. is equal to nine (Figure 5) and even much larger d.f. tests

still have smaller significance levels than a single d.f. test. In general, the exact relation

between the d.f. and the significance level depends on a particular quantile and the power

at a given α-level. Still, our results indicate that tests with moderate degrees of freedom,
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e.g. haplotype tests including two to four SNPs may score better in terms of the ranks. This

provides an additional justification for multilocus or haplotype-based analysis used in whole

genome scans.

Returning to the single-SNP analysis of Ozaki et al. (2002), we emphasize the low (14%)

estimated probability that their associated SNP with the estimated relative risk of 1.6 would

rank among the first 200 most significant results, like have been observed in their study. For

that SNP to appear with 50% probability among the most significant results, the number of

SNPs is estimated to be 3460, given their sample size of 94 cases and 658 controls. For the

case and the control frequencies (p, q), the power of a test for H0 : RR = 1 can be obtained

by considering the asymptotic normal distribution of ln(p/q). For example, equation (27) in

Zaykin et al. (2004) can be inverted to obtain

Pr(P < α) = Φ
(√

N ln(p/q)/
√

1/p + 1/q − 2− Φ−1(1− α/2)
)

(7)

This equation is for the equal sample size of the cases and the controls, but an “effective

common sample size” can be calculated that would provide the same power as two given

sample sizes of cases and controls. The power curve closely follows that of the more common

test for the difference between two frequencies (equation 3 in McGinnis et al., 2002). For

two sample sizes, n1 and n2, we define the “effective common sample size” as the sample size

N that would provide approximately the same power using such test. We find the value of

N as

N =
p(1− p) + q(1− q)

p(1−p)
n1

+ q(1−q)
n2

(8)
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When p = q, the common sample size N in (8) is the harmonic mean of n1 and n2. With

the relative risk of 1.6, the power reaches 99% when n1 = n2 = 990. With such sample

size, there is 50% probability that the associated SNP would appear among first 2 most

significant results, and 90% probability that it would appear among first 200. Reports of

large-scale association studies are still scarce. One such recent study (Kammerer et al., 2004)

identified a replicated association on chromosome 19 in an intercellular adhesion molecule

gene (ICAM) that influence nonfamilial breast cancer risk. Kammerer et al. used a pooled

DNA genome-wide scan with 25,495 SNPs and a sample of 254 cases and 268 controls.

Disregarding some increase in the test statistic variance due to pooling, we estimated that

there was 84% probability to encounter the true positive with the relative risk of 1.3 reported

in their study among first 550 results. We estimated the mean rank of the true positive being

506. The actual rank of that SNP in the genome scan of Kammerer et al. was 550, which is

in close agreement with our prediction (Matt Nelson, personal communication).
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Discussion

True associations are difficult to find even when they are present among the results, as

they tend to rank quite high among all results ordered by the magnitude of a measure of

association or by p-values. Common solution of stringent multiple testing control fails to

influence the relative order of true and false associations, unless the power to detect true

associations is very high. When viewed as a problem of stochastic ordering, the nature of this

becomes clear. Multiple testing procedures penalize collections of p-values (whole genome

scans) in a similar fashion, with no regard to which genome scans produced true associations

ranking at the beginning of the results. Introducing high level of dependency only slightly

reduces the effective number of markers, because the extent of the average correlation is

short on the whole genome scale. It is essential that sufficient sample sizes are used to

ensure very high power to detect true associations. This problem is specific to situations

where the number of tests is very large and approximately equal to the number of false effects

(L ≈ s � m), such as in association genome scans. At the extreme of only two markers

with one of them being a true association, the probability of correctly identifying it using

a p-value quickly increases with power. On the other hand, whole genome scans with more

than 100,000 markers demand extremely high power values (at least 99%) in order to reduce

the number of markers required for replication in a follow-up study to a manageable value.

Probability to locate a true association increases more rapidly for the high values of power.

The increase from 95% to 99% is of much greater consequence than the increase from 85%
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to 89%, although it is the the relative changes e.g. (1-0.95)/(1-0.99) vs. (1-0.85)/(1-0.89)

that are more comparable.

Our examples assume much lower power values than that used in calculations of Risch

and Merikangas (1996), who considered sample sizes needed to achieve the power of 80%

at the α-level of 0.05/L. The power values we use correspond to α = 0.05, reflecting the

influence of the effect magnitude, variability, and the sample size at a given marker. So, for

example 99.999% power at α = 0.05 corresponds to the power of 80% at α = 0.05/200000 for

a normally distributed test statistic. Such high power values will demand very large sample

sizes, and high power at the genome-wide α-level will guarantee that TA’s are likely to

appear as first runners among the results. Practically, sample sizes continue to be modest,

especially with regard the generally small sizes of genetic effects associated with complex

traits. Moreover, genome scan SNPs are only expected to be proxies for actual causative

polymorphisms through highly variable and population-specific LD that further decreases

the effect size of such indirect associations. When multiple moderate effects contribute

to the trait variation it is tempting to combine results from markers with large statistic

values. However, our results suggest that the TA’s tend to be interspersed with hundreds to

thousands of false effects and the results of such analysis should be viewed with caution.

One could look at the issue of the number of tests (L) vs. power (that depends on
√

N)

trying to come up with a way to design an optimal configuration of L and N . The problem

is that the high marker density is required due to relatively short extent of LD in human

populations, thus high values of L (100,000 or more) are needed (Goldstein et al., 2003).
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Therefore, if only a certain number of markers can be followed up in a replication study, the

calculations for the required N should be carried out. If a case-control test is conducted, a

quantity of interest can be the relative risk (RR) of a genetic variant, A. If the frequencies of

A among the cases and controls are p, and q, respectively, the power of a test for H0 : RR = 1

is approximately as given in (7). The population frequency of A is wp+(1−w)q, where w is

the prevalence of cases in the population. The same power calculation corresponds to a test

that the genetic susceptibility associated with A is the same as the population prevalence

(Zaykin et al., 2004).

A potential issue with the TA definition is that the significance around false effects might

be relatively more erratic, and there might be some information in the markers surrounding

the peak corresponding to a TA. However, this problem remains controversial. In the context

of linkage analysis Terwilliger et al. (1997) claimed that the peaks around true positives are

expected to be wider. However Visscher and Haley’s (2001) re-examination suggested that

there is no additional information in the length of the peak. Siegmund (2001) concluded that

in general methods that take the length of the peak into account (e.g. various smoothing

techniques) can be somewhat helpful but are not expected to achieve substantial gains and

that statistically this problem remains difficult. We have previously proposed an approach

to combine neighboring p-values in a sliding window by the “Truncation Product Method”

(Zaykin et al., 2002b). The result of an application of this method is a new set of p-values

combined (smoothed) over regions covered by the sliding window. Theoretically, a combined

p can exceed the values of individual p-values in the combined set.
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We found that multiple testing corrections have only mild effect on the ranks of the

TA’s. That is, among genome scans that yield one or more tests satisfying the significance

threshold, the ranks of TA’s (their expected distributional characteristics) are only moder-

ately improved. This is in line with the observation that the proportion of false discoveries

among multiple-testing corrected results can be substantially higher than the significance

level (Zaykin et al., 2000). High amount of LD between the markers or the presence of the

LD block structure have not been found to greatly influence the ranks of TA’s. The extent

of high correlation has to be large enough to span whole segments of chromosomes for the

effect to be considerable. In the context of linkage analysis such extended correlation has

profound effect as has been demonstrated previously (Lander and Botstein, 1989).

Our results suggest that statistical tests with moderately large degrees of freedom (e.g.

haplotype or other multilocus tests) may score better in terms of the ranks compared to

single SNP tests with one or two degrees of of freedom. When either of the tests has the

same power at a conventional significance level, the moderate degrees of freedom tests tend

to rank closer to zero in terms of the p-values. This implies lower conditional FDR for

these tests and gives an additional justification for using haplotypic tests in whole genome

scans. The exact recommendations are difficult to come up with, as the results depend on

parameters other than the degrees of freedom, as described above. In genome scans with over

100,000 markers, tests with 6 or higher d.f. are expected to have better or equal distribution

of TA ranks than tests involving single SNPs.

In summary, we suggest that actual genetic associations are unlikely to appear among
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the front runners, unless high power at genome-wide level can be assured. We emphasize

that although the results may be ”type-I error protected”, the most significant observations

are still likely to represent false positives. Similar observations are being found in actual

association scans (Ozaki et al., 2002, Kammerer et al., 2004). Considering substantial efforts

put in every association genome scan as well as typically high prior understanding of genetic

contribution to the variation in the trait of interest, it is important to consider the number

of markers that should be subject of careful consideration in an independent follow-up study.

We provide an approach to make such calculations. A program for computing true association

ranking probabilities is available from DVZ upon request.
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Conditionality No correction: δ = 1 Šidak: δ = 1− (1− 0.05)1/L

Power 75% 85% 95% 99% 75% 85% 95% 99%

Value of R

3 0.0000 0.0003 0.0044 0.0505 0.0000 0.0009 0.0121 0.0849

5 0.0000 0.0005 0.0125 0.1064 0.0015 0.0033 0.0326 0.1718

10 0.0006 0.0024 0.0306 0.1897 0.0019 0.0073 0.0698 0.2702

25 0.0020 0.0082 0.0714 0.3168 0.0039 0.0207 0.1336 0.4057

50 0.0043 0.0163 0.1202 0.4294 0.0087 0.0363 0.1984 0.5099

100 0.0101 0.0342 0.1888 0.5397 0.0186 0.0653 0.2825 0.6119

350 0.0414 0.1173 0.3719 0.7288 0.0606 0.1625 0.4770 0.7860

500 0.0612 0.1562 0.4402 0.7800 0.0780 0.2071 0.5374 0.8285

1000 0.1168 0.2630 0.5775 0.8613 0.1493 0.3201 0.6528 0.8911

Table 1: Probabilities that all m = 3 true effects are found among R smallest p-values (with

100,000 false effects)
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Power IID IID LD LD

No correction Šidak No correction Šidak

60% 109311 108011 108941 107667

70% 81367 75476 79006 74593

80% 50021 43611 48637 41539

90% 21686 13924 20447 12230

95% 10002 3555 9931 2936

99% 1671 70 1604 49

Table 2: Number of most significant SNPs that will contain a single true association with 95%

probability (1 TA + 200,000 FA markers scan). ”IID” – independent, identically distributed

tests; ”LD” – assuming monotone LD between the tests with decay characteristics as in

Figure 1.
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Power IID IID LD LD

No correction Šidak No correction Šidak

60% 5298 4883 5165 4803

70% 2662 1992 2632 1742

80% 1005 500 1000 416

90% 242 15 240 9

95% 63 1 59 1

99% 5 1 5 1

Table 3: Number of most significant SNPs that will contain a single true association with 50%

probability (1 TA + 200,000 FA markers scan). ”IID” – independent, identically distributed

false effects; ”LD” – assuming monotone LD between the tests with decay characteristics as

in Figure 1.
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Chances to contain TA 50% 95%

Power No correction Šidak No correction Šidak

60% 5363 4056 109502 105410

70% 2564 1221 78919 69761

80% 1037 203 50795 37167

90% 232 5 22216 11042

95% 59 1 9904 2311

99% 3 1 1620 40

Table 4: Block LD dependency with one true effect (m = 1). Entries represent the number

of most significant SNPs that will contain a single true association with 50% and 95%

probability (1 TA + 200,000 FA markers scan).
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Chances to contain TA 50% 95%

Power No correction Šidak No correction Šidak

60% 482 254 12178 10363

70% 187 41 6319 4548

80% 57 2 2712 1414

90% 9 1 752 181

95% 2 1 228 18

99% 1 1 17 1

Table 5: Block LD dependency with three true effects (m = 3). Entries represent the number

of most significant SNPs that will contain one or more true associations with 50% and 95%

probability (3 TA + 200,000 FA markers scan).
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Chances to contain TA 50% 95%

Power No correction Šidak No correction Šidak

60% 5362 3501 94932 90505

70% 2527 941 72451 61590

80% 913 90 47662 33301

90% 205 2 22001 8587

95% 44 1 9863 1662

99% 2 1 1530 14

Table 6: Two-SNP genotypic (eight degrees of freedom) tests, assuming block LD dependency

between the tests. Entries are the numbers of most significant associations that will contain

a dilocus true association with 50% and 95% probability (1 dilocus TA + 200,000 FA’s scan).
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Figure 1: Diffusion-generated p-value correlation decay. The distance between two neigh-

boring markers (one unit on the X-axis) is 15 kB.
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Figure 2: p-value correlation decay within (left graph) and between (right graph) LD blocks.

The distance between two neighboring markers (one unit on the X-axis) is 15 kB.
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Figure 3: Expected power associated with individual effects (lower line) given overall power

for three effects (m = 3), upper line.
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Figure 4: Plot of degrees of freedom vs. significance level (α) for 80% power tests at the

70% quantile

47



Figure 5: Plot of degrees of freedom vs. significance level (α) for 80% power tests at the 5%

quantile
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