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Multiple Tests for Genetic Effects
in Association Studies

Peter H. Westfall, Dmitri V. Zaykin, and S. Stanley Young

1. Introduction
Many common human diseases have a genetic component as measured by

familial studies. Metabolic disorders such as diabetes, cardiovascular diseases
such as high blood pressure, psychiatric disorders such as schizophrenia, and
neurodegenerative diseases such as Alzheimer’s disease all are thought to have
a hereditary component. In some diseases the genetic control is through a single
gene, while in others, multiple genes interact in complex ways with environ-
mental factors to produce the disease (1–5).

Data are and will become increasingly available to attempt to link genes to
disease phenotype(s). Linkage studies, although powerful for screening
relatively large chromosomal regions, lack needed precision because of the
constraints imposed by the number of recombination events during genera-
tions contained in the pedigree (6). Recently, researchers have attempted to
develop techniques that exploit possibilities of fine mapping due to linkage
disequilibrium between genetic markers and disease genes. Typing single
nucleotide polymorphism markers (SNPs) inside of candidate regions provides
a potential means for such analysis (7); however, the problem remains in that
the complex diseases are very likely to have multiple etiologies. Consider
control of essential hypertension. It has a measured heritability of 3 45%, yet
the identification of specific genes remains unclear. Many candidate genes for
essential hypertension have been identified and, in a particular individual, a
combination of some few of these genes might lead to disease.

There is a need for a statistical strategy to analyze these complex experiments,
given the multiple testing implied by multiple candidate genes and the risk of
false associations. In this chapter we discuss primarily methods for controlling
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familywise error rate (FWE) with multiple genetic tests, identifying single and
epistatic effects, and discuss readily available software (PROC MULTTEST of
SAS/STAT®) for this purpose. The benefit of the method is sound inference in the
evaluation of case-control genotype–phenotype association studies.

2. Multiple Testing Principles for Disease–Genotype Association
Our focus is primarily on multiple contingency table-type tests described in,

for example, Sasieni (8), and extensions thereof. In the simplest analysis,
subjects are cross-classified in a 2 × 2 table, according to disease status (case or
control) and presence or absence of a particular allele at a given locus.

As an initial screening procedure, one may perform a test for each genetic
locus in a genome scan or dense SNP map. Such tests are associational only,
and further study is needed to establish causation; however, they can be very
useful to identify candidate genes. Follow-up analyses can proceed using, for
example, linkage analysis or haplotype-level tests (9).

When these tests are performed separately over multiple loci, there can be
hundreds, even thousands, of tests, and false-positives are expected, as
discussed throughout the statistics and genetics literature (e.g., 10–12). Vari-
ous methods have been proposed to control this risk in genetic studies, such as
FWE-controlling methods (12); informal, global-based testing methods (13);
and false discovery rate (FDR) controlling methods (14).

We suggest controlling FWE and justify it in two ways. First, control of FWE
has a simple operational interpretation: If the FWE is set at 10% (say), then we
expect that in only one out of every 10 studies will one or more false significant
results be claimed. Therefore, the analyst may gamble upon the occurrence that
the given study was not one of those 10%, and claim that all identified associa-
tions are real and repeatable. The FDR controlling procedure of Benjamini and
Hochberg (15), described in Weller et al. (14) for genetic QTL analysis, while
more powerful than FWE for gene finding, does not allow such a clear opera-
tional definition. In a given study, the number of erroneous significances is a
random variable, and therefore somewhat unpredictable. Furthermore, while
FDR-controlling methods allow only an average of 100α% of the claimed
significances to be in error, the false discovery rate can be substantially larger
than that in studies where one or more genes have been declared significant (16).
Thus, although FDR-controlling methods are indeed more powerful, their opera-
tional interpretation is not as useful as that of FWE-controlling methods.

Second, advances in modern computing have made the powerful FWE-con-
trolling “closed testing” methods accessible for the analysis of genetic tests. In
particular, these methods can accommodate discreteness and genetic correla-
tion structures (including linkage) to improve power. In our examples we will
incorporate such features through exact testing methods.
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For readers unfamiliar with multiple testing methods, closed testing, and/or
PROC MULTTEST, it may be helpful to read Westfall and Wolfinger’s (2000)
article “Closed Multiple Testing Procedures and PROC MULTTEST,” avail-
able on the SAS® website (http://www.sas.com/service/library/periodicals/obs/
obswww23/). The remainder of this chapter is a condensed summary of mate-
rial therein, with special emphasis on genetics applications.

2.1. The Closure Principle

FWE-controlling methods can be made less conservative and more powerful
by using the closure principle of Marcus et al. (17). The procedure is as follows:
one considers all possible combination hypotheses obtained via intersection of
the set of base hypotheses of interest. If the base hypothesis, and all intersections
that contain it as a subcomponent, are all rejected by an appropriate α-level test
(we will use exact tests here), then the closure principle allows that the given
hypothesis can be rejected, at FWE level α. Thus, if there are k base tests, there
are 2k–1 tests to consider. For small studies, this procedure is ideal; however, for
typical genotype/phenotype association studies where thousands of genotypes
are considered, the number of intersection subsets to evaluate seems astronomi-
cal, and uncomputable even by current standards. However, there are simplifica-
tions that make this methodology computationally feasible, as we now discuss.

2.2. Application of Closure to the Min P Statistic

Given the typical genome scan, with each test yielding a p-value for genetic
association, the first impulse is to locate the minimum value (min P). The ques-
tion then becomes, “How unusual is the min P, given the number of genetic
features scanned?” This question can be answered using an hypothesis testing
approach, where one tests the global null hypothesis of no feature effect by
evaluating the probability that the min P can be as low as the observed value,
under the global null. This is similar to the approaches described in (18,19),
except that they do not apply the closure principle to isolate particular loci.
Their analysis at the first step is essentially equivalent, but by applying the
closure principle to their test procedure, one can obtain multiple candidate
(single-level) associations between quantitative trait loci (QTLs) and the trait,
all with familywise error protection, even under the case where there are some
null and some non-null QTL locations.

Fortunately, one need not consider all 2k–1 subsets for the closed procedure.
If each subset is tested using min P from that subset, then one need only evalu-
ate the k subsets that correspond to the ordered p-values, and not the entire set
of 2k–1. Formally, let the observed p-values be p1,...,pk ordered as p(1)≤...≤p(k)
with corresponding hypotheses H(1),...,H(k) with p(j)=pij

. Let the random p-
values prior to observation be denoted by Pj.
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The closed min P-based method collapses (20) to the following sequential
procedure:

Algorithm: Closed min P Testing

reject H(1) if P (minj�{i1,...,ik}
Pj ≤ p(1))≤α

reject H(2) if H(1) was rejected and P (minj�{i2,...,ik}
Pj ≤ p(2))≤α

.

.

.
reject H(k) if H(k-1) was rejected and P (minj�{ik}Pj ≤ p(k)) ≤ α

In accordance with the closure principle, all probabilities are calculated under
the assumption of no genetic effect in the respective subsets of hypotheses.

Using the Bonferroni inequality

P (minl�{ij,...,ik}
Pl ≤ p(j)) ≤ (k – j + 1)p(j) ,

the closed min P-based procedure becomes the Holm method (21). However,
this method is needlessly conservative: the upper bound (k – j + 1)p(j) is too
large, implying that 5%-level significance might not be attained. This conser-
vativeness arises because (1) there are correlations, sometimes large, among
the genes due to linkage, and (2) the distributions of the tests are discrete (22).

The correlation structure and discreteness of distributions can be taken into
account by calculating the probabilities

P (minl�{ij,...,ik}
Pl ≤ p(j))

directly and exactly using permutation tests. To do this, one randomly per-
mutes the vectors of genetic indicators over the set of all subjects, so that in a
given resampled data set, the first n1 vectors are assumed to have phenotype 1,
and the remaining n2 are assumed to have phenotype 2. Thus, in this permuta-
tion model, the null hypothesis of no genetic effect holds for all subsets of
hypotheses, as required by both the closure principle and the “subset pivotality”
criterion of Westfall and Young (23), p. 42. The probabilities

P (minl�{ij,...,ik}
Pl ≤ p(j))

are then exactly computed as the proportion of possible permutations for which
the value of l�{ij,...,ik}

Pl
*, as calculated from the permuted data set, is less than

or equal to the value p(j), as calculated from the original data set. Because
resampled (or permuted) data sets preserve the correlation structure and dis-
creteness characteristics, the resulting probabilities are typically less than the
conservative Bonferroni approximations (k – j + 1)p(j).

As the number of possible permutations can be exceedingly large, a simple
and accurate approximation can be obtained by permutation resampling, that
is, by sampling with replacement from the finite population of possible permu-
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tations. The resulting method is a statistically permutationally exact method
under the case of infinitely many Monte Carlo samples. Monte Carlo error
bounds and detailed algorithms are described by Westfall and Young (23).

Fortunately, software to perform this exact, closed min P-based analysis is
readily available in PROC MULTTEST of SAS/STAT® (24). This software
requires a binary or ordinal phenotype such as (diseased)/(not diseased), or
(severely diseased)/(moderately diseased)/(not diseased). The software runs
more quickly when the phenotype is coded as binary. To take full advantage of
the discreteness, it also requires binary genotype representations, although it
can analyze ordinal genotype representations in exact fashion as well.

2.3. Application of Closure to the
Simes–Hommel Test for Genetic Association

As an alternative to the use of the min P statistic for testing each subset
homogeneity hypothesis, one may use Simes test (25), which considers the
entire distribution of p-values, rather than just the minimum. For a given set of
k genetic association tests with p-values p1,...,pk , the hypothesis of no genetic
effect is rejected if min{kp(j)/j} ≤ α , where the p(j) are the ordered p-values.
Like the case with closed testing and the min P test, closed testing with Simes’
test allows shortcuts so that all 2k– 1 subsets need not be evaluated. The simpli-
fication occurs because, for each subset size (say, s), one need only consider
the combined test that contains the gene of interest, and the s – 1 remaining larg-
est p-values, rather than all  

k
 
s
  subsets of size s. Hommel (26), Wright (27), and

Grechanovsky and Hochberg (28) describe such shortcut methods. PROC
MULTTEST of SAS/STAT® (as of Version 8.1) can perform these tests with
O(k2) operations, rather than O(2k), which makes the method feasible for
genetics screening tests.

The Simes test is valid (has type I error rate ≤ α) when the tests are positively
dependent, as shown by Sarkar (29). In negatively dependent cases, the error rate
may exceed α, but the excess is typically slight and not troubling (30).

While it would be preferred to use the discreteness of the distributions
for the Simes test (31), as shown in Subheading 2.2. for the min P test,
such an analysis would greatly increase the computational complexity.
Studies have shown that the Simes-based approach tends to be more pow-
erful than the min P-based approach when there are greater numbers of
affected hypotheses (32,33). In genetics experiments where multiple gene
effects are expected, or with tight linkage, this might indeed be the case. In
such a case, the Simes-based approach might have superior power to the
min P-based approach. Further research is needed to develop computa–
tionally convenient Simes-based closed testing algorithms that incorporate
distributional characteristics.
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2.4. Application of Closure to the Fisher Test for Genetic Association

Yet another possibility is to apply the Fisher combination test (34) for each
subset homogeneity hypothesis. For a given subset, the combination test statis-
tic is T = –2Σ ln pi , which is distributed as χ2

2k when (1) the subset homogene-
ity hypothesis is true, (2) the p-values are uniformly distributed, and (3) the
tests are independent. Assumptions (2) and (3) are rather crucial here, but may
be reasonable for the analysis of candidate genes that are expected to be only
weakly linked, and when sample sizes are large. In gene expression tests, there
is no linkage and the independence assumption might be more reasonable than
in the case of gene–disease association tests.

Like the Simes-based tests, the Fisher combination-based test often allows
several small p-values to reinforce one another to produce a more powerful test
(than the min P-based method). The same O(k2) computational simplification seen
for the closed Simes-based method described above holds for the closed Fisher
combination method, making it also feasible for genetic association tests, and the
method is available in PROC MULTTEST of SAS/STAT® (Version 8.1).

Pesarin (35) avoids the independence and uniformity assumptions, develop-
ing algorithms for exact Fisher combination tests that incorporate relevant
distributional characteristics, including correlations. Further research is needed
to develop computationally convenient closed testing algorithms that incorpo-
rate such tests.

3. Applications to Gene–Disease Associations
While one typically views the phenotype as a response (or penetrance)

resulting from genetic predisposition, it is often reasonable (e.g., in case-
control studies) to turn the problem on its head, and view genotype frequency
as a function of the phenotype. In this section we apply the general closed
testing methods described in Subheading 2. to specific genetic association
tests, with the point of view of multiple comparisons of gene frequencies
between cases and controls.

3.1. Multiple “Serological” Tests with Binary Phenotype

Consider the following 2×2 contingency table, cross-classifying disease sta-
tus with presence of a particular allele at a given locus. The sample size is
deliberately small to illustrate the main ideas.

Allele A Allele A
Group present absent Total

Case 5(100%) 0(0%) 5(100%)
Control 2(40%) 3(60%) 5(100%)
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Sasieni (8) calls this a “serological” test because it “was common when HLA
typing was done by serology, so that it was not possible to distinguish between
[homozygous and heterozygous states].” He also notes that the resulting contin-
gency table test (chi-square, χ2) is completely efficient when allele A is domi-
nant. Our analyses will consider the Fisher exact test instead of the χ2 (36).

Now consider the following arrangement of the contingency table in a “flat
file” representation amenable to computer input.

Subject Group D1

01 Case 1
02 Case 1
03 Case 1
04 Case 1
05 Case 1
06 Control 1
07 Control 0
08 Control 1
09 Control 0
10 Control 0

Here, D1 stands for “dominance coding at locus 1,” and the 0s and 1s denote
presence or absence of allele A at that locus. Now, in genomic scans, for
example, using SNPs (37), we will have multiple such indicators for a large
collection of loci, resulting in a data set like that in Table 1, shown with just
three loci for convenience.

For this data set, the Fisher exact (two-sided) p-values for testing associa-
tions between case-control status and locus are 0.1667, 1.0000, and 0.5238,
respectively, for loci 1, 2, and 3. Nothing is significant, as expected with the
small sample sizes; these values are used for illustration purposes only.

The closure principle described in Subheading 2.1. requires that additional
p-values be computed for intersection hypotheses H12: D1 and D2 are unaf-
fected; H13: D1 and D3 are unaffected; H23: D2 and D3 are unaffected; and
H123: D1, D2, and D3 are unaffected. By “unaffected” we mean that the distri-
butions of the binary vectors are identical between Cases and Controls.

To calculate the exact closed min P-based multiple test procedure described
in Subheading 2.2., there are simplifications, and we require p-values only
for the intersection hypotheses corresponding to the ordered p-values, H123,
H23, and H2. The p-value for H123 using the min P statistic is then p123 =
P(min(P1,P2,P3) ≤ 0.1667 |H123). To calculate this quantity exactly, one can
enumerate all 10! permutations of the three-dimensional vectors, calculate
min(P1,P2,P3) for each permutation and note whether it is smaller than 0.1667,
and take p123 to be the proportion of the 10! permutations (actually, only
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10!/[5!5!] are required) yielding a min P smaller than 0.1667. Alternately,
one can sample from the permutation distribution. The following table shows
one random sample from the multivariate permutation distribution:

Table 1
Input Form for Multiple Dominance Tests

Subject Group D1 D2 D3

01 Case 1 0 1
02 Case 1 0 1
03 Case 1 1 1
04 Case 1 0 0
05 Case 1 1 1
06 Control 1 0 1
07 Control 0 0 0
08 Control 1 1 1
09 Control 0 1 0
10 Control 0 0 0

For this sample, the p-values are, respectively, 1.0000, 0.5238, and 1.0000,
with min P=0.5238. Thus, this is one of the 10! permutations for which min P is
not smaller than 0.1667. Sampling all permutations, 21.43% of the permuta-
tions yield min P smaller than 0.1667, so p123=0.2143 is the exact p-value for
the composite H123 when the min P test is used. According to the closed min P
testing algorithm in Subheading 2.2., the hypothesis H1 (which happens to cor-
respond to the smallest p-value) would not be rejected, and no further inference
could be made. However, if H1 were rejected, then we could proceed to test H3
using the p-value p23=P(min(P2,P3)≤0.5238|H23); H3 would have been rejected
if this probability were less than 0.05 (or whatever FWE level is chosen).

Subject Group D1 D2 D3

07 Case 0 0 0
02 Case 1 0 1
10 Case 0 0 0
01 Case 1 0 0
08 Case 1 1 1
03 Control 1 1 1
09 Control 0 1 0
05 Control 1 1 1
04 Control 1 0 0
06 Control 1 0 1
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This analysis is automated in PROC MULTTEST of SAS/STAT®. The
invoking code and testing portion of the output are as follows:

proc multtest data=table1 stepperm n=1000000 seed=121211;
class group;
test fisher(D1 D2 D3);
contrast “compare” –1 1; run;

p-Values

Stepdown
Variable Contrast Raw Permutation

D1 Compare 0.1667 0.2149
D2 Compare 1.0000 1.0000
D3 Compare 0.5238 0.7855

The results of the closed testing algorithm are conveniently reported as adjusted
p-values in the “Stepdown Permutation” column: if the adjusted p-value is
<0.05, then the corresponding genetic association is significant at the FWE=
0.05 level using the closed min P-based testing algorithm of Subheading 2.2.
Note also that the reported p-value 0.2149 differs slightly from the p-value 0.2143
obtained via direct enumeration of all 10! permutations; this difference reflects
Monte Carlo error. As MULTTEST sampled 1,000,000 times, with replacement,
from the population of permutations, the Monte Carlo standard error is just
{0.2149(1–0.2149) /1000000}1/2 = 0.00041; thus the Monte Carlo estimate is
1.46 standard errors from the exact value, or acceptably close.

We have chosen 1,000,000 samples from the permutation distribution in this
case, and the analysis takes less than a minute on a typical (as of the present date)
PC workstation. In larger problems with more loci, it will take longer. We suggest
at least 1000 samples to estimate the p-values with reasonable precision, although
as large a number of samples as is convenient should ordinarily be chosen.

3.2. Testing Both Dominant and Recessive Modes of Inheritance
We may allow for recessive effects by considering 2 × 2 tables where genetic

effect is coded as either (1) the gene is homozygous for the allele in question or
(2) the gene is not homozygous for the allele in question. There is a high degree
of dependence among such tests; this will be accommodated exactly in the closed
multiple testing procedure. Following from Table 1, Table 2 represents the input
form suggested for such an analysis. Each gene has been coded two ways, with
dominance coding D as shown in Table 1, and recessive coding R.

Note that there is positive correlation between the two codings, as a person
who is “recessive” with respect to one allele is also “dominant” with respect to
the other. There can also be strong positive correlation between closely linked
genes owing to the linkage disequilibrium; nevertheless, these correlations are
properly modeled via vector resampling as described previously.
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Using the binary coding shown in Table 2, the specific hypotheses tested
are H0ij : πlij = π2ij , where πlij denotes prevalence of coding i (i=R,D) for
gene j (j=1,2,3) among controls; and where π2ij denotes the corresponding
quantity among cases. These hypotheses again are testable using the two-
sided Fisher exact test, and the exact closed testing method is applicable as
well. Code and output follow.

proc multtest data=table2 stepperm n=1000000 seed=121211;
class group;
test fisher(D1 R1 D2 R2 D3 R3);
contrast “compare” –1 1; run;

p-Values

Stepdown
Variable Contrast Raw Permutation

D1 Compare 0.1667 0.3258
R1 Compare 0.0079 0.0161
D2 Compare 1.0000 1.0000
R2 Compare 1.0000 1.0000
D3 Compare 0.5238 0.7855
R3 Compare 0.2063 0.3490

There are several points to make about the results. First, the recessive genotype
at locus 1 is considered statistically significant at the FWE = 0.05 level using
the exact min P-based closed testing procedure, as the Stepdown Permutation
p-value is < 0.05. Second, the adjustment of the unadjusted p-value 0.0079 to
the adjusted 0.0161 is substantially less than one might expect with Bonferroni
correction (6 × 0.0079 = 0.0474); this savings comes as a result of using exact
closed testing methods that incorporate discreteness as well as correlations.
Third, it is somewhat unusual to find a more significant result when the family

Table 2
Dominant and Recessive Codings

Subject Group G1 D1 R1 G2 D2 R2 G3 D3 R3

01 Case AA 1 1 aa 0 0 AA 1 1
02 Case AA 1 1 aa 0 0 AA 1 1
03 Case AA 1 1 AA 1 1 AA 1 1
04 Case AA 1 1 aa 0 0 aa 0 0
05 Case AA 1 1 Aa 1 0 AA 1 1
06 Control Aa 1 0 aa 0 0 AA 1 1
07 Control aa 0 0 aa 0 0 aa 0 0
08 Control Aa 1 0 AA 1 1 Aa 1 0
09 Control aa 0 0 AA 1 1 aa 0 0
10 Control aa 0 0 aa 0 0 aa 0 0
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size is expanded, as we see here comparing the “dominance” analysis with
three tests to the “dominance + recessive” analysis with six tests. However,
when the expanded family contains tests that are more powerful, then it is cer-
tainly possible that there will be more significance in the expanded family,
despite the larger multiple testing penalty. This example is suggestive of a situ-
ation where locus 1 has a purely recessive and fully penetrant effect.

This method can be extended to multiallelic genes as well. With multiple alle-
les the number of tests expands considerably: for L > 2 alleles, there will be 2L
tests. (However, when L = 2 there are only two tests as, e.g., the dominant and
recessive tests for allele a are completely determined by the corresponding tests
for allele A.) Caution is recommended here, as large numbers of multiallelic genes
can increase the family size substantially, thereby reducing power (in most cases).

3.3. Multiple Tests for Epistatic Effects

When two or more genes are necessary for the expression of the phenotype,
we have an epistasis. It is thought that many complex traits and diseases are the
result of the interaction of several rather common genotypes.

One possible method for screening gene combinations is to compare
frequencies of the combinations occurring in either the case or the control
populations. Let us revert to the “dominance” coding shown in Table 1, and
consider whether combined effects of genes might signal differences in cases
vs controls. The resulting data look like this:

Subject Group D1 D2 D3 D1D2 D1D3 D2D3

01 Case 1 0 1 0 1 0
02 Case 1 0 1 0 1 0
03 Case 1 1 1 1 1 1
04 Case 1 0 0 0 0 0
05 Case 1 1 1 1 1 1
06 Control 1 0 1 0 1 0
07 Control 0 0 0 0 0 0
08 Control 1 1 1 1 1 1
09 Control 0 1 0 0 0 0
10 Control 0 0 0 0 0 0

There are obviously correlations between the columns; in fact, in these data the
D1D3 column is identical to the D3 column. The exact closed testing proce-
dure automatically accounts for such dependencies, in effect reducing the mul-
tiplicative adjustment by one for each perfect dependency. The SAS code and
output are as follows:

proc multtest data=table3 stepperm n=1000000 seed=121211;
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class group;
test fisher(D1 D2 D3 d1d2 d1d3 d2d3);
contrast “compare” –1 1; run;

p-Values

Stepdown
Variable Contrast Raw Permutation

D1 Compar 0.1667 0.2864
D2 Compar 1.0000 1.0000
D3 Compar 0.5238 0.7855

D1D2 Compar 0.1667 0.2864
D1D3 Compar 0.5238 0.7855
D2D3 Compar 1.0000 1.0000

In this analysis, nothing would be considered significant, as none of the
Stepdown Permutation (or closed exact Min P adjusted) p-values are less than
the FWE 0.05 level. However, had there been a synergistic effect of two of
these genes in dominant form, we might have seen some significant results.

One should be very cautious about using the multiplicative factors as shown here
to discover epistatic effects; indiscriminant selection can greatly increase family size
and thereby reduce power. For example, if there are 1000 genes, one might consider
1000(999)/2 = 499,500 possible combinations. It is preferred to keep the family size
smaller; thus this method is suggested when the number of genes is small, say 100 or
less (assuming reasonable sample sizes in the case and control groups).

3.4. Stratification
One can conceive of several situations in which gene–disease associations should

be analyzed using stratification. Two cases of major importance are as follows:

1. Epistasis involving a known gene. A known gene, say G1, contributes to disease.
However, there are questions of epistasis concerning other genes. In this case, the
epistatic effects should not be modeled as illustrated in Subheading 3.3. as the
prevalence of G1Gi will surely differ between cases and controls, owing simply
to the main effect of G1. In such a case it will be appropriate to compare the
prevalence of genotype Gi among patients who share a common value of G1.

2. Environmental factors. An environmental factor, smoking, for example, might
be a known contributor to disease. In such a case, it would be better to assess
genetic contributions by partialling out the smoking variable, both to improve
sensitivity of the tests and to remove a possible source of confounding.

Stratified analyses can be handled in an exact fashion, using essentially the
same methods as described in Subheadings 3.1.–3.3., but using exact strati-
fied (Mantel–Haenszel) tests instead of Fisher exact tests. Exact p-values for
these tests (analogous to the Fisher exact p-values) are easily obtained using
existing software. The hypotheses differ depending on whether one is using
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stratified or unstratified analysis; with stratified analysis, the composite null
hypothesis states that the distributions of the binary vectors are identical for
both groups within each stratum (although the distributions are allowed to
differ between strata). To test these hypotheses, we permute the observation
vectors as before, but independently within strata.

The following invocation of PROC MULTTEST uses the data in Table 1,
and treats D3 as if it were a known gene contributing to disease (in dominant
form), and performs exact, closed, stratified multiple testing.

proc multtest data=table1 stepperm n=1000000 seed=121211;
class group;
strata d3;
test ca(D1 D2/permutation=20);
contrast “compare” –1 1; run;

p-Values

Stepdown
Variable Contrast Raw Permutation

D1 Compare 0.2500 0.3993
D2 Compare 1.0000 1.0000

In this example we find no significant difference of D1 frequency between
cases and controls when analyzed within groups defined by D3 status. Of
course, this is a very small data set; in practice, we might apply this to hundreds
of candidate genes, after stratifying on one known gene.

The syntax “ca” in the preceding SAS code stands for “Cochran–Armitage
Trend test” (38,39), which is equivalent to the Fisher exact test in the
unstratified case, and which gives an exact stratified Fisher exact test in the
stratified case. The syntax “permutation =20” specifies exact permutation tests
when the total number of observed Gi genotypes is < 20, or in this case, always.
With large numbers of cases and controls, it is reasonable to specify “permuta-
tion =100” or so to calculate exact permutation tests when the totals are < 100,
but otherwise to use the normal approximation.

With sufficient sample size, this could be used as a forward stepwise
procedure: select the most significant gene at step 1 (if significant by adjusted
p-value); select the second major contributing gene (if significant by adjusted
p-value), while partialling out the first as a “stratum” variable; select the third
major contributing gene (if significant by adjusted p-value) while partialling
the first and second selected variables as a combined “stratum” variable. This
procedure has the attractive property that FWE is controlled at each stage, under
the assumption of fixed ordering of variables. However, because the variables
selected at earlier stages are random, it is possible that FWE is uncontrolled;
see ref. 40 for further details in a related application.



156 Westfall, Zaykin, and Young

3.5. Ordinal Phenotypes

Some phenotypic traits, for example, mental diseases, are best expressed
ordinally, i.e., not diseased, mildly diseased, diseased, and badly diseased. One
can perform a logistic regression of the binary genotype on the phenotypical
outcome and test for significance of phenotype. The resulting logistic regres-
sion score test is equivalent to the Cochran–Armitage linear trend test that com-
pares proportions of genotypes among the ordinal categories (8).

In our paradigm of conditioning on the phenotype and examining the distri-
bution of the genotypes, such an analysis can easily be accommodated as shown
in Subheadings 3.1.–3.4., with the exception that the tests are based on the
exact permutation distribution of the (possibly stratified) Cochran–Armitage
test instead of the Fisher exact two-sample tests. The null hypothesis for any
given set of genotypes is that the multivariate binary genotype distribution is
identical across all phenotype categories; or equivalently, that all permutations
of the n multivariate binary vectors are equally likely. The trend test statistics
are most sensitive to linear (or at least monotonic) departures from the null.

The exact closed min P-based analysis shown in the previous subheadings
can be performed just as easily in this case. Consider the data in Table 1, but
with the “Case/Control” variable recoded as “Severe,” “Mild,” and “None”
(Table 3). The following SAS code and output show how to perform the exact,
closed multiple testing procedure with these data.

proc multtest data=table4 order=data stepperm n=1000000 seed=121211;
class group;
test ca(D1 D2 D3/permutation=20);
contrast “trend” –1 0 1; run;

Table 3
Ordinal Phenotype

Group D1 D2 D3

Severe 1 0 1
Severe 1 0 1
Severe 1 1 1
Mild 1 0 0
Mild 1 1 1
None 1 0 1
None 0 0 0
None 1 1 1
None 0 1 0
None 0 0 0
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p-Values

Stepdown
Variable Contrast Raw Permutation

D1 Trend 0.1417 0.2349
D2 Trend 1.0000 1.0000
D3 Trend 0.1667 0.3108

Here the “raw” p-values are exact Cochran–Armitage permutation p-values,
and the Stepdown Permutation p-values are obtained by evaluating the distri-
bution of min P over subsets corresponding to the ordered raw p-values, as
described in Subheading 3.1.

Trend tests can be more powerful than Fisher exact tests that collapse the
phenotype into two categories (e.g., here we might classify both “Severe” and
“Mild” into “Case,” and leave “None” as “Control.”) However, one should
limit the number of categories (say, to five or fewer); otherwise, the tables can
become sparse and the tests can lose power. (Note: the MULTTEST procedure
also computes exact stratified Cochran–Armitage trend tests for ordinal
phenotype, as shown in Subheading 3.3. for the case of binary phenotype.)

3.6. Ordinal Genotypes: Cumulative Polygenic Effects
Suppose the disease is associated with allele A on a biallelic gene. In some

disease models, the effect or penetrance of the gene is higher for heterozygotes
than for homozygotes aa, while the effect or penetrance of the gene is still higher
for homozygotes AA than for heterozygotes. This suggests a linear model relating
phenotype Y to the ordinal genotype X, where X=0, 1, or 2 for genotypes aa, Aa,
and AA, respectively. Assuming Y is binary or ordinal as we have done, and again
turning the problem on its head, we can compare the distribution of X for the differ-
ent categories of Y, and test for trend, much as with the Cochran–Armitage test.
Exact nonparametric tests for trend are available in, for example, StatXact (41), so,
in principle, the problem of exact closed multiple tests is solved for this case as
well. However, there is no ready-made software for this purpose. A reasonable
solution is available in PROC MULTTEST where one uses the parametric test for
genotype i to obtain p-values pi , then finds the multiplicity-adjusted p-values
P(minPj ≤  pi ). The final result is obtained by permuting vectors as before, so the
final analysis is exact (modulo Monte Carlo error, which can be reduced to an
arbitrarily low level). Using the parametric unadjusted p-values in the exact min P
test can cause problems of imbalance (42,43); however, this problem is often not a
major issue (44).

Another source of ordinal variables that can be handled similarly is the
cumulative effect of several genes. For example, it may be thought that the
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alleles A1, A2, and A3 (in genes 1, 2, and 3, respectively) contribute cumulatively
to the phenotype Y. In this case the variable X4 = X1 + X2 + X3 is suggested.
Other codings are possible, such as X4 = I(X1 > 0) + I(X2 > 0) + I(X3 > 0), where
I(•) denotes the indicator function, as would be suggested if the disease is
cumulatively related to dominant expressions of the Ai only, with no extra
“bump” for recessivity. Note also that such a combination presupposes that the
directions of allelic associations are known for all genotypes, which might be
rare. Nevertheless, the method is shown below to illustrate the possibility, and
to note that perfect dependencies of the type induced by the X4 variable cause
no problems with the exact min P-based testing method.

The data in Table 4 relate directly to Table 2, with X1 – X4 as just described.
Exact closed multiple testing is accomplished via the following code, and the
results are shown as follows:

proc multtest data=table5 stepperm n=1000000 seed=121211;
class group;
test mean(X1–X4);
contrast “compare” –1 1; run;

p-Values

Stepdown
Variable Contrast Raw Permutation

X1 Compare 0.0002 0.0161
X2 Compare 0.7599 1.0000
X3 Compare 0.1151 0.3490
X4 Compare 0.0497 0.1272

The result here is that the gene G1 ordinal variable has a different mean for the
two phenotypes, as its adjusted p-value is < 0.05.

Table 4
Ordinal Genotypes

Subject Group G1 X1 G2 X2 G3 X3 X4

01 Case AA 2 aa 0 AA 2 4
02 Case AA 2 aa 0 AA 2 4
03 Case AA 2 AA 2 AA 2 6
04 Case AA 2 aa 0 aa 0 2
05 Case AA 2 Aa 1 AA 2 5
06 Control Aa 1 aa 0 AA 2 3
07 Control aa 0 aa 0 aa 0 0
08 Control Aa 1 AA 2 Aa 1 4
09 Control aa 0 AA 2 aa 0 2
10 Control aa 0 aa 0 aa 0 0
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In this analysis the “Raw” p-values are inexact, being based on the normal-
theory t-test, but the Stepdown Permutation p-values are exact modulo Monte
Carlo error. The inexactness of the Raw p is suggested by the fact that it is so
small, relative to the exact multiplicity-adjusted p-value.

4. Application to a Large Simulated Data Set

The data for this study (ftp://statgen.ncsu.edu/pub/zaykin/cand/) were
simulated according to the following model. We simulated a genetic map of
20 candidate regions. Each 100-kb candidate region contained 10 uniformly,
randomly spaced SNPs. Candidate regions themselves were assumed
unlinked; however, the recombination process for SNPs inside candidate
regions was modeled directly, assuming Haldane’s mapping function (no
interference) and Poisson-distributed number of recombination events with
mean equal to the genetic length in Morgans. Three of 10 candidate regions
contained disease genes. Four SNPs in each of first two regions and three SNPs
in the third region were assumed to be contributing to the disease.

We used an additive model with weak interaction to model penetrances.
According to this model, one allele for each of 11 SNPs was assigned a uniform
random genetic effect, additively contributing to the total probability of
developing disease (genetic penetrance), but the final penetrance for each
genotype class was given a 0 – 5% uniform random deviation. Finally,
311=177,147 individual penetrances for individual multilocus genotypes were
scaled between 0 and 1, so that the “typical” penetrance value of a multilocus
genotype was about 50%.

We allowed for separate sexes, with no selfing, and no allowance of sib
matings. Generations were assumed to be discrete. We simulated five originally
homogeneous equilibrium populations of 500 individuals each, and allowed
for 100–200 generations of genetic drift with population growth rate of 1.2,
and a migration rate of 0.2 from each of the four populations into the fifth
during the first 35 generations. The maximum population size was set to 15,000
individuals. We kept only populations with the final disease prevalence in the
range 5–15%. We sampled 500 of affected and 500 of nonaffected individuals
from the admixed population at the final generation.

To illustrate the method we simulated sets of data using two different
models. The first model (model 1) is as described in the preceding. The second
model (model 2) differs in that the chromosome regions are themselves closely
linked, so that the association may extend over all 20 regions.

Table 5 contains part of the resulting analysis of a typical data set (20 smallest
p-values) simulated under the first model, and Table 6 contains part of the analy-
sis for data that were simulated under the second model (200 generations). The
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analysis for both tables was performed using PROC MULTTEST, Version 8.1
(an example of the invoking program code is given in the Appendix).

Actual regions contributing to the probability of developing the disease were
typed with markers labeled 1–15, so the algorithm correctly identifies SNPs
typed in all three regions. Originally small p-values corresponding to the false
regions become nonsignificant after proper multiplicity adjustment over the
set of 400 tests. Note that closed permutation p-values are smaller than the
closed Bonferroni and Sidak (independence-assuming) corrections. The effect
is more pronounced when long regions of densely mapped SNPs are consid-
ered (Table 6). For example, the closed Bonferroni-adjusted p-value for R134
is 0.0089834, but corresponding exact (modulo Monte Carlo error) min P
permutation adjustment is 0.002.

5. Application to Gene Expression Data
Gene expression data may be analyzed using similar techniques. Data

given in Golub et al. (45) are available at http://waldo.wi.mit.edu/MPR/
data_set_ALL_AML.html) for relating gene expression from 7129 genes to

Table 5
p-Values for Simulated Data, Model 1

Unadjusted Closed Closed Closed
Genotype p-value Bonferroni Sidak Permutation

D7 0.0000000 0.00000 0.00000 0.000
D9 0.0000000 0.00000 0.00000 0.000
R9 0.0000000 0.00000 0.00000 0.000
D10 0.0000000 0.00000 0.00000 0.000
R10 0.0000000 0.00000 0.00000 0.000
R7 0.0000006 0.00019 0.00019 0.000
R5 0.0000198 0.00695 0.00692 0.005
D5 0.0000723 0.02548 0.02515 0.015
D8 0.0002896 0.10276 0.09767 0.056
R132 0.0004779 0.16953 0.15597 0.091
R17 0.0008843 0.31228 0.26832 0.201
D133 0.0019127 0.67437 0.49084 0.384
R3 0.0023851 0.83925 0.56838 0.452
D127 0.0024807 0.86887 0.58101 0.462
D70 0.0026634 0.92573 0.60423 0.482
D113 0.0034234 1.00000 0.69534 0.572
D136 0.0034387 1.00000 0.69570 0.572
R8 0.0039253 1.00000 0.74653 0.635
R172 0.0046352 1.00000 0.80447 0.693
D129 0.0095221 1.00000 0.96444 0.915



Multiple Tests in Association Studies 161

disease status. (Golub et al. [45] apparently consider only 6817 of the 7129
available on the data set.) There are 11 patients with acute myeloid leukemia
(AML) and 27 with acute lymphoblastic leukemia (ALL).

As discussed in ref. 45, one goal is to discriminate between the known AML
and ALL populations on the basis of the observable gene expressions. Dis-
criminant analysis (DA) is commonly used for this purpose, and a first step in
DA is often to test for differences between the groups using Hotelling’s T2 test
(46). However, the T2 test requires a nonsingular covariance matrix, and in this
case the 7129 × 7129 covariance is quite singular, having rank somewhere near
11+27=38, and the test cannot be applied. Nevertheless, the min P test can be
carried out exactly to test for global differences; in addition, the exact min
P-based closed testing procedure allows one to specify particular genes where
simple associations exist, with full FWE protection.

In the gene expression data the response variable is continuous, and exact,
distribution-free closed testing methods are available, as described in
Subheading 3.5. One may test a global hypothesis using the max T statistic,
where T is calculated as

Table 6
P-Values for Simulated Data, Model 2

Unadjusted Closed Closed Closed
Genotype p-value Bonferroni Sidak Permutation

R138 0.000014178 0.0043713 0.0043618 0.001
D42 0.000014739 0.0045309 0.0045207 0.001
R83 0.000017126 0.0052764 0.0052625 0.002
R115 0.000018588 0.0057627 0.0057462 0.002
R178 0.000022408 0.0068857 0.0068621 0.002
D194 0.000026979 0.0082854 0.0082512 0.002
D100 0.000028380 0.0087390 0.0087011 0.002
R134 0.000029131 0.0089834 0.0089432 0.002
D6 0.00003150 0.009618 0.009572 0.003
R191 0.00003233 0.009875 0.009827 0.004
R149 0.00003882 0.011811 0.011741 0.005
R73 0.00003975 0.012020 0.011949 0.006
D123 0.00004579 0.013792 0.013697 0.007
R100 0.00006178 0.018604 0.018433 0.009
D130 0.00006465 0.019422 0.019236 0.009
D21 0.00006529 0.019568 0.019378 0.009
R22 0.00007886 0.023409 0.023138 0.010
R104 0.00008572 0.025422 0.025102 0.011
D177 0.00008980 0.026545 0.026196 0.013
R173 0.00010426 0.030858 0.030388 0.015
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T = 
XALL – XAML

sp 1/11 + 1/17

where XALL and  XAML refer to average expression in the ALL and AMR groups,
and sp is the pooled standard deviation. However, because max T is
monotonically related to min P, where the p-values are calculated using the
t -distribution with df = 11+27–2, this method is exactly equivalent to the min
P testing method described in Subheading 3. PROC MULTTEST accom-
plishes this by resampling the 7129-dimensional vectors of gene expressions
without replacement into like data sets having 27 ALL and 11 AML patients,
then recomputing max T * for the resampled data set. The p-value for the appro-
priate intersection hypothesis is then reported as the proportion of resampled
data sets yielding max T * greater than the original observed max T.

Golub et al. (45) performed a related permutation based-analysis using the
statistic T / = (XALL – XAML)/(s1 + s2). It would be equally possible to perform
the exact closed testing procedure max T / as the base test, if desired. The
benefits of the MULTTEST analysis are that (1) it is easily available and (2) it
is known to control FWE via the closure principle.

Note that, as in the case of gene–disease tests, vector correlations are
incorporated via vector resampling. However, in the case of gene expression
data, there is no linkage, and therefore large correlations are not expected.
Nevertheless, there is sample-specific dependence because the number of
variables far exceeds the number of observations. This dependence is used to
reduce the p-values, legitimately, because the tests are exact. Furthermore, as
noted previously, the sample 7129 × 7129 covariance matrix among the gene
expressions is massively singular, but this poses no difficulties whatsoever;
the exact multiple testing procedure legitimately incorporates such sample-
specific dependencies into the multiplicity adjustments via vector permuta-
tion resampling.

Such a test is an exact permutation test when all  
38
 

27
  distinct resampled data

sets (more than a billion) are enumerated. However, a reasonable approxima-
tion can be obtained by sampling randomly and with replacement from that set
of permutations, and this is the PROC MULTTEST approach for testing global
hypotheses. To make inferences about the specific genes, the closure method is
used, and once again, only the subsets corresponding to the 7129 ordered
p-values need to be evaluated, not the entire set of 27129 subsets. Thus, once
again, the MULTTEST procedure provides a closed testing method that is
computationally feasible.
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Table 7
p-Values for Golub Leukemia Data Set

Unadjusted
Gene p-value Bonferroni–Holm Closed Min P

GENE3320 1.3824E-10 0.000001 0.0001
GENE4847 2.4355E-10 0.000002 0.0001
GENE2020 6.578E-10 0.000005 0.0001
GENE1745 0.000000010 0.000070 0.0004
GENE5039 0.000000010 0.000072 0.0004
GENE1834 0.000000015 0.000108 0.0005
GENE461 0.000000036 0.000257 0.0005
GENE4196 0.000000062 0.000438 0.0009
GENE3847 0.000000072 0.000510 0.0010
GENE2288 0.000000089 0.000635 0.0011
GENE1249 0.000000174 0.001239 0.0017
GENE6201 0.000000176 0.001250 0.0017
GENE2242 0.000000195 0.001386 0.0020
GENE3258 0.000000211 0.001500 0.0021
GENE1882 0.000000319 0.002267 0.0024
GENE2111 0.000000366 0.002606 0.0027
GENE2121 0.000000578 0.004115 0.0041
GENE6200 0.000000623 0.004428 0.0042
GENE6373 0.000000819 0.005823 0.0058
GENE6539 0.000001120 0.007961 0.0082
GENE2043 0.000001260 0.008954 0.0092
GENE2759 0.000001309 0.009304 0.0092
GENE6803 0.000001429 0.010156 0.0101
GENE1674 0.000001480 0.010519 0.0103
GENE2402 0.000001523 0.010821 0.0107
GENE2186 0.000001657 0.011770 0.0111
GENE6376 0.000002092 0.014856 0.0142
GENE3605 0.000002553 0.018133 0.0157
GENE6806 0.000002584 0.018352 0.0159
GENE1829 0.000002727 0.019364 0.0168
GENE6797 0.000003014 0.021399 0.0180
GENE6677 0.000003439 0.024412 0.0196
GENE4052 0.000003701 0.026268 0.0220
GENE1394 0.000004925 0.034948 0.0282
GENE6405 0.000005353 0.037980 0.0300
GENE248 0.000006381 0.045267 0.0346
GENE2267 0.000006488 0.046019 0.0352
GENE6041 0.000007802 0.055335 0.0421
GENE6005 0.000008019 0.056861 0.0428
GENE5772 0.000008994 0.063771 0.0471
GENE6378 0.000009591 0.067993 0.0500
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The results are given in Table 7 and the invoking MULTTEST code is given
in the Appendix. Surprisingly, several results are significant, despite the small
sample sizes and large degree of multiplicity. The association of leukemia sub-
type with the expression phenotype is confirmed; tests with closed permuta-
tion-based adjusted p-values < 0.05 indicate significant associations at the 0.05
FWE level.

Also note that 10,000 samples are generated from the permutation distribu-
tion, and all 7129 ordered tests were processed for each sample. This took only
20 min on a Windows NT workstation.

The effect of incorporating the sample-specific dependencies among the p-
values is not as great as one might hope with such massive singularity in the
covariance matrix. Naively, one might expect (or hope) that the effective
Bonferroni multiplier would be on the order of 38 = 27 + 11, the approximate
rank of the 7129 × 7129 covariance matrix, when the dependence structure is
incorporated correctly. However, this is not so. Dividing the adjusted p-values
by the unadjusted p-values gives the effective multipliers; for example, the
effective multiplier for the test involving “GENE248” is 0.0445267/
0.000006381 = 7094.0 for the Bonferroni–Holm procedure, but only 0.0346/
0.000006381 = 5422.2 for the exact min P-based closed procedure. The savings
from using the correlation structure is to reduce the multipliers some, but not
nearly to the extent suggested by the rank of the covariance matrix.

The Simes–Hommel method described in Subheading 2.3. also was applied
to these data; the results were almost identical to Bonferroni–Holm, but the run
took nearly 24 h because of the large number of tests.

Finally, we note that there are occasionally extreme outliers in the gene
expression data. The negative effects of outliers can be diminished through
log transformation as in ref. 45 or one can use the rank transformation to
avoid taking the logarithm of numbers that are less than or equal to zero. Use
of the rank transformation in conjunction with permutation resampling in
PROC MULTTEST provides an exact permutation-based closed testing
procedure as before. However, this procedure is also attractive because the
marginal tests are approximately valid rank-based permutation tests as well,
being based on the rank transform (47). When the analysis is performed on
the rank-transformed expression data, there are a few changes in Table 7,
mostly additions of variables where a large outlier masked the difference
using the two-sample t-test.

Appendix
The following SAS/STAT® code was used to produce the results shown in

Tables 5 and 6. It is assumed that the input file (in this case “SNP.DAT”) has
the result of each gene test coded as AA = 1 1, Aa = 1 0, aA = 0 1, and aa = 0 0;
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and has the binary phenotype in the first column. The macro “%trans” recodes
these data into “AA vs not AA” and “aa vs not aa” categories.

%macro trans;
%do i = 1 %to 200;
%let i1 = %eval(2*&i-1);
%let i2 = %eval(2*&i);
d&i = (bin&i1+bin&i2)=0;
r&i = (bin&i1+bin&i2)=2;

%end;
%mend;
data snp;

infile “snp.dat” lrecl=10000;
input y bin1-bin400;
%trans;
keep y d1-d200 r1-r200;
run;

proc multtest data=snp stepbon stepsid noprint out=pval stepperm n=10000;
class y;
test ca(d1-d200 r1-r200/permutation=100);
contrast “dis v nondis” 0 1;

run;
proc sort data=pval;

by raw_p;
proc print data=pval;

var _var_ raw_p stpbon_p stpsid_p stppermp;
where raw_p<.05;

run;

The following SAS/STAT® code was used to analyze the data shown in
Table 7. It is assumed that the SAS data set (“gene.express”) has the result of
each gene expression test in variable GENEi, and that the treatment indicators
(AML or ALL) are contained in the variable called “disease.”
proc multtest data = gene.express out=adjp stepperm holm n=10000 noprint;

class disease;
test mean(gene1-gene7129);
contrast “AML vs ALL” –1 1;

run;
proc sort data=adjp(where=(stppermp le .05));

by raw_p;
proc print data=adjp(where=(stppermp le .05)) noobs label;

var _var_ raw_p stpbon_p stppermp;
run;
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