
Abstract Haplotype analysis has been used for narrow-
ing down the location of disease-susceptibility genes and
for investigating many population processes. Computa-
tional algorithms have been developed to estimate haplo-
type frequencies and to predict haplotype phases from
genotype data for unrelated individuals. However, the ac-
curacy of such computational methods needs to be evalu-
ated before their applications can be advocated. We have
experimentally determined the haplotypes at two loci, the
N-acetyltransferase 2 gene (NAT2, 850 bp, n=81) and a
140-kb region on chromosome X (n=77), each consisting
of five single nucleotide polymorphisms (SNPs). We em-
pirically evaluated and compared the accuracy of the sub-
traction method, the expectation-maximisation (EM) meth-
od, and the PHASE method in haplotype frequency esti-
mation and in haplotype phase prediction. Where there
was near complete linkage disequilibrium (LD) between
SNPs (the NAT2 gene), all three methods provided effec-
tive and accurate estimates for haplotype frequencies and
individual haplotype phases. For a genomic region in
which marked LD was not maintained (the chromosome
X locus), the computational methods were adequate in es-
timating overall haplotype frequencies. However, none of
the methods was accurate in predicting individual haplo-
type phases. The EM and the PHASE methods provided
better estimates for overall haplotype frequencies than the
subtraction method for both genomic regions.

Introduction

Haplotype analysis has been widely employed in linkage
studies for narrowing down the location of disease-sus-

ceptibility genes and in studies investigating population
processes such as the origin and migration of ancestral al-
leles. It has also become an increasingly popular tool in
assessing linkage disequilibrium (LD) and for mapping
complex disease genes in association studies where phe-
notype-marker association may not be detectable as a first
order association between single markers and phenotypes
(Templeton 1999). Several studies indicate that extended
marker haplotypes can provide additional power in detect-
ing associations (Templeton et al. 1988; Kruglyak 1999;
Judson et al. 2000; Martin et al. 2000; Zollner and von
Haeseler 2000). Conventionally, haplotype phases have
been resolved by tracing chromosomal transmission
through extended families. Such extensive pedigree data
are often not available in association studies where unre-
lated individuals or small nuclear families are used. Hap-
lotype phases can also be determined by using molecular
approaches, such as cloning, allele-specific polymerase
chain reaction and single molecule dilution (Ruano and
Kidd 1989; Ruano et al. 1990; Michalatos-Beloin et al.
1996; Clark et al. 1998). These molecular methods are
labour-intensive and expensive to use in haplotype deter-
mination and, therefore, are not suitable for high-through-
put applications.

A cheap and relatively straightforward alternative for
haplotype estimation is the application of computational
algorithms to predict haplotypes by using genotype data
(Clark 1990; Excoffier and Slatkin 1995; Long et al. 1995;
Hawley and Kidd 1995; Chiano and Clayton 1998; Stephens
et al. 2001a). Most of these methods use the expectation-
maximisation (EM) algorithm to predict haplotype fre-
quencies in a population for which no assumption is made
about LD between markers. Fallin and Schork (2000)
have demonstrated high accuracy in haplotype frequency
estimation for biallelic diploid samples by using the EM
algorithm via extensive simulation studies. They have
found that the estimation error is decreased by a number
of factors: an increased sample size, a decreased ambiguity
(unphased individuals), an increased dispersion of haplo-
type values, an increased LD between single nucleotide
polymorphisms (SNPs) and an increased number of rare
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SNPs. Much of the overall haplotype estimation error is
attributable to sampling error, which is inherent in all
studies even when the phases are experimentally deter-
mined. Templeton et al. (1988) first described the applica-
tion of the EM algorithm in haplotype estimation in a
study of association between phenotypic variation and ge-
netic polymorphisms in the apo AI-CIII-AIV gene cluster.
Haplotype phases, defined by three SNPs over a 10-kb re-
gion, were resolved for all individuals. The authors ob-
served enhanced statistical power in detecting genetic ef-
fects by the application of haplotype analysis.

The subtraction algorithm described by Clark (1990)
works in a stepwise manner. It starts by assigning haplo-
types for unambiguous individuals who are either com-
plete homozygotes or single-site heterozygotes. Subse-
quently, other individuals who carry a copy of the previ-
ously recognised haplotypes are identified. Each time a
resolved haplotype is identified as one of the possible al-
leles in an ambiguous individual, the homologous allele is
considered to be a recognisable haplotype. This exercise
is repeated until the haplotype phases for all individuals
are either resolved or identified as unresolved. In combi-
nation with AS-PCR, the subtraction algorithm has been
used to resolve the haplotype phases of the lipoprotein li-
pase gene (Clark et al. 1998).

Stephens et al. (2001a) have recently introduced a
Bayesian statistical method (called the “PHASE” method)
for haplotype reconstruction from population data. PHASE
incorporates the prior knowledge that unresolved haplo-
types will be similar to known haplotypes. On the basis of
their simulations, the authors have shown that PHASE
improves on both the EM algorithm and the subtraction
algorithm in haplotype reconstruction.

However, it remains to be seen how effective the algo-
rithms are in haplotype prediction when applied to actual
data. Tishkoff et al. (2000) have empirically determined
the haplotypes at the CD4 locus over a 9.8-kb region con-
sisting of a short tandem repeat polymorphism and an
ins/del polymorphism and have assessed the accuracy of
the EM algorithm in haplotype frequency estimation.
They have shown that EM-algorithm-estimated frequen-
cies of common haplotypes do not differ significantly
with that empirically determined, whereas rare haplotypes
are occasionally miscalled. Recently, Zhang et al. (2001)
compared PHASE and EM by using both simulated data
and phase-known data derived from a subset of the CD4
genotype data of Tishkoff et al. (2000). They found that
the performances of PHASE and EM were similar in both
haplotype construction and haplotype phase prediction.
Stephens et al. (2001b) compared EM and PHASE for
haplotypes determined from pedigree data at three loci,
each being approximately 4–5 kb. They argued that
PHASE should outperform EM when there was “cluster-
ing” in the true haplotype configuration and showed
PHASE either outperformed EM or did about the same.
However, none of these studies empirically evaluated the
accuracy of computational methods with real data when
such “clustering” of haplotypes is not present. The perfor-
mance of these computational methods is likely to be in-

fluenced by LD between markers. None of the previous
studies have presented LD data (Tishkoff et al. 2000;
Stephens et al. 2001a, 2001b; Zhang et al. 2001). There
probably was reasonable LD between markers in these
studies as the regions studied were relatively small (ranged
between 4 kb and 10 kb). It remains to be seen how these
algorithms work when applied to relatively large genetic
loci. This is important as most of the studies involving
haplotype construction, such as studies in population ge-
netics and in mapping disease genes, include genomic re-
gions of hundreds of kilobases or more. In addition, none
of the previous studies has empirically evaluated the per-
formance of the subtraction method over the EM and
PHASE method. In this study, we have used experimental
data from two loci, one with pronounced LD over an 850-bp
region, the other with less LD over a 140-kb region. We
have comprehensively evaluated and compared the accu-
racy of the EM algorithm, the subtraction algorithm, and
the PHASE method in both haplotype frequency estima-
tion and in individual haplotype prediction based on ex-
perimental data.

Materials and methods

DNA samples

Blood was collected from 81 GlaxoSmithKline employees (Cau-
casians from North Carolina, USA) and 154 males (Caucasians
from San Francisco, USA) under informed consent. DNA was ex-
tracted by PPGX (Research Triangle Park, North Carolina) by us-
ing the Puregene DNA isolation kit (Gentra Systems, supplied by
Flowgen Instruments, Lichfield, UK) or by Whatman Bioscience
(Cambridge, UK). All DNA samples were anonymised.

Genotyping

Five SNPs from the N-acetyltransferase 2 (NAT2) gene on chro-
mosome 8 (Fig.1; Agundez et al. 1996) were genotyped for each
of the 81 GlaxoSmithKline employees by PCR and direct se-
quencing. An 850-bp fragment of the NAT2 gene was amplified by
using primers F1 and R1 and subsequently sequenced with the ini-
tial PCR primers and two additional nested primers (F2 and R2) on
an ABI 377 Sequencer (PE Applied Biosystems, Foster City, USA).
The sequences of the primers were as follows: F1 (forward PCR
primer): 5’-CTATAAGAACTCTAGGAACAAATTGGAC-3’;
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Fig.1 Schematic representation of the five SNPs of the NAT2
gene. SNP1(C/T), SNP2(T/C), SNP3 (C/T), SNP4 (G/A) and
SNP5(A/G) correspond to nucleotide positions 282, 341, 481, 590
and 803 (U53473), respectively. Frequency (Freq) refers to the
minor allele frequencies. The distances between neighbouring
SNPs are shown
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R1 (reverse PCR primer): 5’-AAGGGTTTATTTTGTTCCTTAT-
TCTAAAT-3’; F2 (nested forward primer): 5’-CACCTTCTCCT-
GCAGGTGACCA-3’; R2 (nested reverse primer): 5’-TGTCAAG-
CAGAAAATGCAAGGC-3’. Sequencher (Genecodes, Ann Arbor,
USA) was used to analyse the sequences in order to generate geno-
type results for each of the five polymorphic sites.

Five SNPs over a region of 140-kb on the X chromosome were
identified by PCR and direct sequencing of DNA samples from 11
female individuals (Coriell Cell Repositories, New Jersey, USA).
Oligo ligation assays (OLA; Landegren et al. 1988; Grossman et
al. 1994) were used to generate genotype calls for the 154 males.
Table 1 shows the sequences of the primers and probes used in the
PCR and OLA assays. The data was analysed by using Genotyper
NT (PE Applied Biosystems) to generate genotype calls.

Molecular determination of the haplotypes

The 850-bp PCR fragment of the NAT2 gene was cloned into a TA
cloning vector (Invitrogen, Groningen, The Netherlands). Between
six and twelve subclones from each of the 81 individuals were se-
quenced. The sequence data were analysed by using Lasergene
(DNASTAR, Madison, USA) to resolve the haplotypes for both
chromosomes of each individual. The haplotypes from the five

SNPs on chromosome X were assigned directly according to the
genotype data, as each individual male has only one X chromo-
some.

Computational estimation of the haplotypes

For the chromosome X region, artificial diploid genotypes were
constructed by combining random pairs of males. The haplotypes
for each diploid for both genetic regions were assigned by using
the subtraction algorithm (Clark 1990). Briefly, haplotypes for in-
dividuals who were either complete homozygotes or single-site
heterozygotes were assigned initially and a preliminary list of hap-
lotypes present in the samples was recorded. Other individuals
who carried a copy of the previously recognised haplotypes were
then identified. Each time a resolved haplotype was identified as
one of the possible alleles in an ambiguous individual, the homolo-
gous allele was considered to be a recognisable haplotype and added
to the haplotype list. This exercise was repeated until the phase in-
formation for all individuals was either resolved or identified as
unresolved. Depending on the order in which the genotypes are en-
tered, the algorithm may produce a different set of haplotypes. The
haplotype frequencies were calculated by gene counting in indi-
viduals with resolved haplotype phases.

The sample haplotype frequencies and individual conditional
haplotype probabilities for both genomic regions were also esti-
mated by using the EM algorithm with multiple restarts (computer
program is available from D. Zaykin upon request). All haplotype
pairs that can yield an unphased genotype pattern were enumer-
ated. The probability for each of the haplotype configurations was
calculated by using the estimated population haplotype frequen-
cies. For example, suppose one haplotype pair that generates the
unphased pattern is i/j, where i and j represent two of the haplo-
types with p(i) and p(j) frequencies as estimated by the EM algo-
rithm. From Bayes’ rule, the conditional probability that the un-
phased genotype Gij has the haplotype pair i/j is

Pr(p(i), p( j)
∣∣Gi f ) = p(i)p( j)

�x,y p(x)p(y)

where x and y indicate a haplotype pair that can yield the same un-
phased genotype and the sum is taken over all such pairs including
i and j. The haplotype pair with the greatest probability was con-
sidered to be the haplotype phase for each diploid. We also evalu-
ated the accuracy of EM in haplotype construction by increasing
the probability threshold to 99%, i.e. the haplotype phase was con-
sidered to be resolved only if the probability of a haplotype pair
was greater than 99%. In this case, a diploid was classified as un-
phased if neiher of the haplotype pair had a probability greater than
99%.

The default parameter values (10,000 iterations, a thinning in-
terval of 100, and a burn-in value of 10,000) specified in PHASE
were used to evaluate the performance of this method (Stephens et
al. 2001a). Haplotype phase was specified by the most probable
haplotype pair that is compatible with the individual multi-site
genotypes. Similarly, we examined the accuracy of PHASE in hap-
lotype construction by increasing the threshold probability to 99%,
i.e. the haplotype phase was considered to be resolved only if the
probability of each haplotype call at ambiguous positions was
greater than 99%.

Measures of estimation accuracy

The two measures, IF and IH, introduced by Excoffier and Slatkin
(1995) were used to estimate the effectiveness of computational al-
gorithms when predicting haplotype frequencies. IF (the similarity
index) describes how close the estimated haplotype frequencies are
to the actual frequencies and is defined as the proportion of haplo-
type frequency in common between estimated and true frequencies:

IF =
h∑

k=l

min(pek, ptk) = 1 − 1

2

h∑

k=l

|pek − ptk |

Table 1 OLA primer and probe sequences for the five SNPs on
the X chromosome

Primer or probe Sequences

SNP6 (T/G)
F PCR primer TTTTGGTGTTGCAGTATTGACAG
R PCR primer TCTTGGGAAGCATAGGTCTCTTG
Allele 1 probe GCTGTCAGAACAGGAATT (FAM)
Allele 2 probe ACAGCTGTCAGAACAGGAATG (FAM)
Common probe TCCAAACTGCTCTAGCTGAAGACAG

SNP7 (G/T)
F PCR primer CCACAAATCTTTGCTGTGATGAG
R PCR primer ACCCCATGCTAGACATGCTATTC
Allele 1 probe AATGAGTGGTCCGGGAAG (HEX)
Allele 2 probe CAAAATGAGTGGTCCGGGAAT (HEX)
Common probe CCCTTGCTATAGACGGGAGAATGCTA-

CAGTCTC

SNP8 (A/G)
F PCR primer GAGCTGGAAAGCACCAGAACATG
R PCR primer GAGGCGATCTCCAGCCTCC
Allele 1 probe TCCTTTTCCCAAACCAGA (FAM)
Allele 2 probe TCATCCTTTTCCCAAACCAGG (FAM)
Common probe GCTCTATATGTTCAAGGAAATGCAGC-

GGTATGTGTGCCT

SNP9 (C/G)
F PCR primer AGACACGAAGGAGTGCATTCTG
R PCR primer TCTAGCCCAAACCTCTTTTGAAG
Allele 1 probe TTACAAAGTCAACTCACC (HEX)
Allele 2 probe TTTTTACAAAGTCAACTCACG (HEX)
Common probe CGTTAGCCACCACTGAGATCAAGAGC

SNP10 (T/C)
F PCR primer CCACATAGATGCTTCCAGCAGC
R PCR primer GTTCAGTTTTGCCTGACGATC
Allele 1 probe AATGCTACAGAGAAGCTT (FAM)
Allele 2 probe AAGAATGCTACAGAGAAGCTC (FAM)
Common probe AAGTAGTGAACATAGTGGGGAGCTT-

GAGTCAC



where h is the number of haplotypes in the data set, pek and ptk are
the estimated and true (experimentally determined in this case)
haplotype frequencies for the k haplotype, k=1....h. IF varies be-
tween 0 and 1 (a value of 1 is achieved when the actual and esti-
mated frequencies are identical). IH compares the number of dif-
ferent haplotypes seen experimentally with the number of different
haplotypes identified by the computer programs. A haplotype is
defined as being detected if it has an estimated frequency of at
least 1/(2n) in a population of n individuals (Excoffier and Slatkin
1995). IH is given by:

IH = 2(mtrue − mmissed)

mtrue + mest

where mtrue is the number of haplotypes determined experimen-
tally, mest is the number of estimated haplotypes with frequency
above the threshold, and mmissed is the number of haplotypes identi-
fied experimentally but not computationally. The value of IH can
vary between 1 (when the computational identified haplotypes are
exactly the same as those determined experimentally) to 0 (when
none of the true haplotypes are identified computationally).

The mean squared error (MSE) described by Fallin and Schork
(2000) was also used to measure the accuracy of computational al-
gorithms in haplotype frequency estimation. The MSE measure in-
corporates all the k haplotype frequencies and thus reflects the
overall difference in haplotype frequencies between estimated and
true values for a particular data set:

M S E =
h∑

k=l

(pek − ptk)
2/h

where h, pek and ptk are defined as above.

Pair-wise LD between SNP markers

LD was measured by using the standardised D’ first proposed by
Lewontin (1964). D’ is the LD relative to its maximum value for a
given set of allelic frequencies for the pair of sites. It is calculated
by dividing the raw D value by the absolute maximal value possi-
ble. In this sense, D’ is a normalised value of LD.

Results

Molecular determination of genotypes and haplotypes 
for the NAT2 locus

Figure 1 shows the distribution of the five SNPs utilised
in this study over the NAT2 locus. The minor allele fre-
quencies of the five polymorphisms determined in the 81
individuals ranged from 0.25 to 0.49, which were similar
to those reported for Caucasians (Agundez et al. 1996).
The genotype distribution for each SNP did not deviate
significantly from the Hardy-Weinberg equilibrium.

To determine the haplotypes molecularly, the 850-bp
PCR fragment of NAT2 was cloned into a TA cloning vec-
tor and between six and twelve subclones from each indi-
vidual were analysed by PCR and sequencing. In the ab-
sence of recombination, recurrent mutation and back mu-
tation, the maximum number of haplotypes for a locus
with five biallelic variable sites is 6 (i.e. n+1), with n be-
ing the number of SNP sites. On the other hand, if there is
random association between polymorphic sites, the maxi-
mum number of potential haplotypes for a locus with five
SNPs is 32 (25). Analysis of the 162 alleles in the NAT2
locus revealed seven haplotypes suggesting strong LD in
this small chromosomal region (Table 2). Indeed, there

were maximal or nearly maximal D’ values among all
SNP pairs indicating that there was complete or near com-
plete linkage disequilibrium and that recombination was
rare over such a short physical distance in the NAT2 gene
locus (Table 3). The five SNPs generated ten SNP pairs
(Table 3). Each of the eight SNP pairs created only three
haplotypes. The remaining two SNP pairs created all four
possible haplotypes with three haplotypes accounting for
98%–99% of the alleles.

Computational estimation of haplotypes 
for the NAT2 locus

We inferred haplotypes from the genotyping results for
the 81 individuals by using the subtraction algorithm
(Clark 1990). Thirty-one individuals were either homozy-
gous for all SNP sites or heterozygous at only one SNP
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Table 2 Haplotype frequencies determined by molecular and com-
putational methods for the NAT2 locus (n=81 individuals)

Haplotypea Experi- Sub- EMc PHASEd

mentally tractionb

determined

12212 (H1) 0.444 0.430 0.444 0.444
11111 (H2) 0.235 0.164 0.234 0.235
21121 (H3) 0.247 0.313 0.247 0.247
21111 (H4) 0.025 0.031 0.025 0.025
12211 (H5) 0.031 0.039 0.031 0.031
12112 (H6) 0.012 0.016 0.012 0.012
11112 (H7) 0.006 0.008 0.005 0.006
IF 0.914 0.999 1
IH 1 0.923 1
MSE 1.4E-03 2.9E-07 9.3E-08

aAllele 1 refers to the major allele and allele 2 refers to the minor
allele for all of the five SNPs in this locus
bThe haplotype phases were resolved for 64/81 individuals accord-
ing to the subtraction method (Clark 1990). The haplotype fre-
quencies were calculated from the 64 phase-resolved individuals.
The remaining 17 phase unresolved individuals were triple het-
erozygotes with the genotype distribution being 11,12,12,11,12
cEM algorithm with 100 restarts
dPHASE method (Stephens et al. 2001a)

Table 3 Linkage disequilibrium (absolute D’ value) between SNP
markers in the NAT2 locus and chromosome X locus

Locus and markers Markers

Nat 2 locus SNP2 SNP3 SNP4 SNP5
SNP1 1 1 1 1
SNP2 1 1 0.97
SNP3 1 0.92
SNP4 1

Chr X locus SNP7 SNP8 SNP9 SNP10
SNP6 0.27 0.40 0.59 0.17
SNP7 0.23 0.1 0.40
SNP8 0.23 0.21
SNP9 0.71



site; thus, their haplotypes could be assigned directly. Eight,
eighteen, three and twenty-one individuals were heterozy-
gous at two, three, four and all five SNP sites, respec-
tively. Using the subtraction method, we resolved the
haplotype phases for 64 individuals (79%, Table 4). There
was 100% concordance between experimentally determined
haplotype phases and those predicted computationally.
The remaining 17 individuals were heterozygous at the
same three SNP sites and each had two possible haplotype
configurations. The haplotype frequencies were calcu-
lated from the 64 phase-resolved individuals (Table 2).
The similarity index (IF) value was 0.91, which was close
to its maximal value, suggesting that the subtraction method
was effective in estimating haplotype frequencies for this
region. The overall estimation error (MSE) was 1–2 or-
ders of magnitude greater than that reported by Fallin and
Schork (2000) using the EM algorithm, probably because
the subtraction method used a reduced number of individ-
uals in the haplotype frequency estimation (Table 2).

We estimated the haplotype frequencies by using the
EM algorithm with 100 restarts to minimize chances of
local convergence. A comparison of the haplotype fre-
quencies determined molecularly with those that were es-
timated showed very high concordance (Table 2). The IF

value was 0.999 and the MSE value was four orders of
magnitude smaller than that obtained by using the sub-
traction method. The estimated haplotypes were in 100%
agreement with that experimentally determined for all of
the 81 individuals, indicating pronounced accuracy for
haplotype assignment (Table 4).

There was no difference between PHASE estimated
haplotype frequencies and those experimentally determined.
The IF value reached the maximal value of 1 and the MSE
value was the smallest among the three methods (Table 2).
PHASE-constructed haplotypes showed 100% agreement
with those experimentally determined indicating that
PHASE was effective and accurate in haplotype construc-
tion for this region.

The EM method and PHASE method outperformed the
subtraction method both in estimating haplotype frequen-
cies and in predicting individual haplotype phases for the
NAT2 region, where there was pronounced LD. There
were no significant differences in the effectiveness and
accuracy between PHASE and EM, though PHASE per-
formed marginally better than the EM method in haplo-
type frequency prediction.

Molecular determination of genotypes and haplotypes 
for the X chromosome locus

Figure 2 shows the distribution of the five SNPs over a re-
gion of 140 kb on chromosome X. The minor allele fre-
quencies of the five SNPs ranged from 0.06 to 0.40. Table 3
presents the pair-wise linkage disequilibrium between
markers.
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Table 4 Comparison of computational methods in predicting hap-
lotype phases

Method NAT2 (n=81) Chromosome X (n=77)

Phase- Accuracya Phase- Accuracya

resolved resolved 
individuals diploids 

Subtraction 64 100% 43 95%
EM 81 100% 77 78%
Phase 81 100% 77 77%

aWe calculated overall accuracy from phase-resolved individuals

Fig.2 Schematic representation of the five SNPs spanning 140 kb
on chromosome X. The distances between neighbouring SNPs are
shown. Frequency (Freq) refers to the minor allele frequencies of
the five SNPs on chromosome X

Table 5 Haplotype frequencies determined by molecular and com-
putational methods for the chromosome X region

Haplotypea Experi- Sub- EMc PHASEd

mentally tractionb

determined

12212 (h1) 0.169 0.186 0.176 0.149
12211 (h2) 0.162 0.221 0.172 0.156
11211 (h3) 0.123 0.128 0.122 0.136
12112 (h4) 0.117 0.081 0.095 0.136
12221 (h5) 0.097 0.081 0.117 0.136
12111 (h6) 0.084 0.116 0.080 0.071
11221 (h7) 0.045 0.035 0.039 0.039
11112 (h8) 0.039 0.047 0.053 0.039
12121 (h9) 0.032 0.012 0.033 0.019
11121 (h10) 0.019 0.023 0.023 0.019
22112 (h11) 0.019 0.035 0.045 0.045
11212 (h12) 0.013 0.012 0.010 0.013
11222 (h13) 0.013 0.000 0.007 0.000
12222 (h14) 0.013 0.012 0.009 0.013
22212 (h15) 0.013 0.000 2.76E-6 0.000
11111 (h16) 0.006 0.000 4.23E-10 0.006
21111 (h17) 0.006 0.012 0.007 0.000
21211 (h18) 0.006 0.000 0.011 0.019
22111 (h19) 0.006 0.000 4.14E-6 0.000
22121 (h20) 0.006 0.000 7.19E-10 0.000
22211 (h21) 0.006 0.000 1.75E-15 0.000
IF 0.856 0.914 0.89
IH 0.800 0.865 0.83
MSE 3.68E-04 1.13E-04 2.02E-04

aFor SNP6, SNP9 and SNP10, allele 1 refers to the major allele
and allele 2 refers to the minor allele. For SNP7 and SNP8, allele
1 refers to the minor allele and allele 2 refers to the major allele
bAccording to the subtraction method (Clark 1990). The haplotype
frequencies in this column were calculated from 43/77 diploids. The
phases of the remaining 34 diploids (19 double heterozygotes, 12 tri-
ple heterozygotes, 3 quadruple heterozygotes) remained ambigu-
ous, i.e. there was more than one possible haplotype configuration
cEM algorithm with 100 restarts
dPHASE method (Stephens et al. 2001a)



The haplotypes for the 154 males were assigned di-
rectly according to the genotype data, as each individual
male has only one X chromosome. The five polymor-
phisms established 21 out of the 32 (25) potential haplo-
types (Table 5). Six of the haplotypes (h16–h21) were ob-
served only once and four haplotypes (h12–h15) were
seen only twice. These 10 rare haplotypes (h12–21) repre-
sented 9% of all the 154 alleles. Six haplotypes (h1–h6)
had allele frequencies above 5%, representing 75% of the
154 alleles.

Computational prediction of haplotypes 
for the chromosome X locus

To evaluate the effectiveness and accuracy of the compu-
tational methods in predicting haplotype phases and esti-
mating haplotype frequencies over a relatively large ge-
netic region (140 kb), we artificially created genotype
data for 77 diploids by combining random pairs of males.
According to the subtraction algorithm (Clark 1990), we
resolved the haplotype phases for a total of 43 diploids
(56%), including 38 diploids that were heterozygous at 
0 or 1 site and five diploids that were heterozygous at
multiple sites. There was more than one possible haplo-
type configuration for each of the remaining 34 diploids
(44%) and the haplotype phases of these diploids re-
mained unresolved. For diploids that were either complete
homozygotes or single-site heterozygotes, there was a
100% match between the estimated and real haplotypes.
However, the computationally assigned haplotype config-
urations were in agreement with those experimentally de-
termined for only three out of the five multi-site heterozy-
gotes (Table 4). Our data suggested that the subtraction
method was neither effective nor accurate in predicting
haplotype phases for diploids that were heterozygous at
multiple SNP sites in genomic regions where pronounced
LD was not maintained.

The haplotype frequencies were estimated by using the
43 “phase-resolved” diploids by the subtraction method
(Table 5). The combined haplotype frequency for the six
common haplotypes (h1–h6) that each had true allele fre-
quencies greater than 5% was 81%, which was higher
than that determined molecularly (75%). The IF value of
the subtraction method was lower for this region than that
for the NAT2 region (Table 2, 5).

We estimated the haplotype frequencies for the 77 arti-
ficially generated diploids by using the EM algorithm
with 100 restarts. For the 10 haplotypes (h12–21) observed
only once or twice molecularly, 0 to 1.5 alleles were pre-
dicted computationally, accounting for 4% of all the alle-
les, which was lower than that observed empirically (9%).
The estimated (76%) and true (75%) combined frequen-
cies were similar for the common haplotypes (h1–h6).
The reduced IF value and increased MSE value for this lo-
cus in comparison with that observed for the NAT 2 locus
suggested that the estimation error for overall haplotype
frequencies was increased with decreasing LD when us-
ing the EM algorithm (Tables 2, 5).

As expected, EM predicted haplotypes for the 38
diploids that were either complete homozygotes or single-
site heterozygotes were in agreement with those experi-
mentally determined. For the 39 diploids that were multi-
site heterozygotes, the haplotype phases assigned by the
EM algorithm were in agreement with those experimen-
tally determined for 22 diploids (56%). The overall accu-
racy for predicting haplotype phases was 78% for all of
the diploids (Table 4). One haplotype pair for each of 11
multi-site heterozygotes had the conditional probability of
being greater than 99%; the predicted haplotypes were in
agreement with the true haplotypes for only five of these
diploids (45%). Thus, the accuracy was not improved by
increasing the probability threshold.

PHASE slightly over-estimated the combined haplo-
type frequencies (78%) for the six common haplotypes
(h1–h6), whereas it under-estimated the combined fre-
quency (5%) for the 10 rare haplotypes (h12–h21; Table 5).
The overall estimation error for the chromsome X locus
was greater than that for the NAT 2 locus (Tables 2, 5), in-
dicating decreased accuracy with decreased LD between
markers. PHASE performed marginally better than the
subtraction method and marginally worse that the EM
method in estimating haplotype frequencies for this locus.

PHASE accurately assigned the haplotypes for 21 of the
39 (54%) multi-site heterozygotes, in addition to the 38
diploids that were heterozygous at 0 or 1 site. The overall
accuracy in haplotype construction with PHASE was 77%
(Table 4). The probability of each haplotype call at an un-
known position being greater than 99% was found for
only one multi-site heterozygote, the predicted haplotypes
for which was in disagreement with the true haplotypes.
For this locus, there was no considerable difference in the
effectiveness and accuracy in haplotype construction be-
tween the PHASE method and the EM method.

To make a more comprehensive comparison between
the three computational methods in haplotype frequency
estimation, we performed simple computer simulation to
assess the accuracy of these algorithms when there was
uniformity of haplotype frequencies. The amount of het-
erozygosity, and therefore the number of ambiguous haplo-
types, was increased by equalising haplotype frequencies,
thereby presenting more of a challenge to the computa-
tional algorithms. We took the empirical pool of haplotypes
in Table 5 and assumed equal haplotype frequencies for all
haplotypes (1/21). Random samples of 77 individuals were
taken from populations with these frequencies, assuming
random union of haplotypes. In comparison with the results
presented in Table 5, there was a decrease in the IF value
for the simulated data set, indicating that there was in-
creased estimation error for haplotype frequencies by using
the EM and PHASE algorithms when the haplotype fre-
quencies reached uniformity (Table 6). The subtraction
method allowed the haplotype phases to be resolved for
only 21/77 (27%) diploids and the haplotype frequencies
were calculated by using these phase-resolved diploids
(Table 6). This exercise suggested that there was increased
estimation error for haplotype frequencies with increased
ambiguity by using all three computational methods.
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We also compared the run-time for each of the three
computational methods in predicting haplotypes from dip-
loid data (Table 7). The subtraction method had the least
computational burden; the calculation was completed in a
fraction of a second for data presented in Tables 2, 5, and
6. PHASE took the longest time to complete the computa-
tional process among all three methods (Table 7). It is an-
ticipated that the difference in computational burden be-
tween the three methods would even more pronounced if
an increase in the number of markers is included in the
analysis.

Discussion

We evaluated the effectiveness and accuracy of three com-
putational algorithms in estimating haplotype frequencies
and in predicting haplotype phases by using molecular
data. We found that all three methods performed well in
overall haplotype frequency estimation for genetic regions
with high LD (Table 2). The accuracy of computational
methods was decreased with decreasing LD and increas-
ing ambiguity. The EM and PHASE algorithms gave bet-
ter overall estimates of haplotype frequencies than the sub-
traction method for both genomic regions. This may re-
flect that the EM and PHASE algorithms include all indi-
viduals from the samples in the haplotype frequency esti-
mation, whereas the subtraction method only uses the phase-
resolved individuals. PHASE out-performed the EM algo-
rithm for the NAT2 region, whereas the opposite was true
for the chromosome X region. All three algorithms gave
better estimates of haplotype frequency for the genomic
region with pronounced LD (the NAT2 locus) than that for
the region where substantial LD was not maintained
(chromosome X). This observation is in agreement with
that reported recently in a simulation study to assess the
accuracy of the EM algorithm in haplotype frequency esti-
mation (Fallin and Schork 2000). Fallin and Schork (2000)
demonstrated that the EM algorithm performed very well
under a wide range of population and data set scenarios.
We have shown that haplotype frequencies can be esti-
mated from genotype data computationally without addi-
tional laboratory cost and that the estimation error increases
with decreasing LD.

We also evaluated and compared the effectiveness and
accuracy of the computational algorithms in predicting
haplotype phases for individuals. All algorithms predicted
individual haplotypes effectively and accurately for the
NAT2 region, where there was near complete LD between
SNP sites. The EM and PHASE algorithms gave better es-
timates than the subtraction method. Such effectiveness
and accuracy in haplotype prediction were reduced when
marked LD was not maintained, as demonstrated at the
chromosome X locus. The subtraction method resolved
haplotype phases for only 56% of the diploids with the
overall accuracy being 95%. The EM and PHASE meth-
ods assigned the haplotype pair with the highest probabil-
ity to each of the diploids, with the overall accuracy being
78% and 77%, respectively. Increasing the probability
threshold of the haplotype phase being resolved to 99%
resulted in a decrease in the number of phase-resolved dip-
loids with no improvement in the accuracy of both meth-
ods. In contrast to the observation by Stephens et al. (2001a,
2001b), our comparisons showed that there were no sig-
nificant differences between EM and PHASE in haplo-
type construction for both genomic regions. Each of our
two datasets involved five SNPs; the relative perfor-
mances of these methods with much larger number of
SNPs remained to be seen. Our results indicated that the
computational algorithms could provide an effective and
accurate prediction for haplotype phases in genetic regions
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Table 6 Haplotype frequency estimation by using computational
algorithms for the chromosome X region assuming uniform popu-
lation haplotype frequencies from simulated data (n=77)

Haplotype Sample Subtraction EM PHASE 
frequency estimationa estimationb estimationc

11111 0.039 0.024 0.012 0.033
11112 0.045 0.024 0.042 0.006
11121 0.039 0.024 0.016 0.033
11211 0.097 0.071 0.120 0.013
11212 0.045 0.071 0.036 0.006
11221 0.026 0.024 0.030 0.013
11222 0.039 0.048 0.040 0.006
12111 0.026 0.024 0.009 0.020
12112 0.058 0.095 0.078 0.020
12121 0.084 0.071 0.116 0.059
12211 0.026 0.071 0.063 0.045
12212 0.045 0.071 0.038 0.013
12221 0.058 0.048 0.036 0.032
12222 0.032 0.024 0.015 0.019
21111 0.032 0.000 0.092 0.065
21211 0.045 0.000 0.0001 0.019
22111 0.064 0.048 0.021 0.051
22112 0.064 0.095 0.049 0.012
22121 0.039 0.048 0.048 0.006
22211 0.039 0.048 0.041 0.013
22212 0.058 0.071 0.072 0.026
IF 0.795 0.785 0.74
IH 0.950 0.976 1
MSE 5.40E-04 6.56E-04 8.91E-04

aThe haplotypes were assigned according the subtraction method
(Clark 1990). The haplotype frequencies in this column were cal-
culated from 21/77 phase-resolved diploids
bEM algorithm with 100 restarts
cPHASE method (Stephens et al. 2001a)

Table 7 Comparison of the run-times for the three computational
methods on a SUN UltraSparc-II

Locus Subtraction EM PHASE

NAT 2 (Table 2) 0 min 0.01 s 0 min 13.48 s 128 min 51.51 s
Chr X (Table 5) 0 min 0.01 s 0 min 11.78 s 42 min 29.79 s
Chr X (Table 6) 0 min 0.03 s 0 min 40.21 s 61 min 1.66 s



with pronounced LD but not in regions where marked LD
is not maintained. It has to be stressed that the degree of
inherent phase ambiguity for multiple-site heterozygotes
is increased with decreased LD between markers (Hoh
and Hodge 2000). The performance of computational al-
gorithms in predicting haplotype phases should be inter-
preted in the light of this inherent ambiguity.

Our observations may have potential implications for
genome-wide association studies. Although experimental
evidence supporting the proposal for genome-wide asso-
ciation studies is emerging (Cambien et al. 1999; Cargill
et al. 1999; Martin et al. 2000; Moffatt et al. 2000), se-
quential examination of individual SNPs in an attempt to
identify disease-susceptibility genes is fraught with prob-
lems of interpretation. First, the number of analyses per-
formed will be enormous for the 100,000–500,000 SNPs
that will be used in such studies, making it necessary to
correct the statistical result and to ensure the authenticity
of the signal from each SNP. Second, in contrast with
monogenic diseases where the causative single nucleotide
changes may have unambiguous phenotypes, the contri-
butions of genetic variations in the underlying network of
interactions that are responsible for the phenotypes of
complex diseases are much more complicated. The pat-
tern of genotype-phenotype association might be more
complex than initially envisaged. Indeed, the very fact
that a large number of SNPs have been identified within
coding and regulatory regions of a specific candidate gene
raises the possibility that several of them within a gene
might be functional (Keavney et al. 1998; Nickerson et al.
1998; Cambien et al. 1999; Cargill et al. 1999; Moffatt et
al. 2000). Third, our current knowledge about the actual
distribution of LD across the human genome is limited
(Goddard et al. 2000; Kidd et al. 2000). If complete or near
complete association between several polymorphisms with-
in a gene is present, haplotypic combinations of the poly-
morphic sites may play a significant role in the function-
ality of the gene. Therefore, it is necessary to explore mul-
tiple alternative analytical approaches to identify disease
genes in association studies. The incorporation of haplo-
type analyses will ensure additional use of valuable infor-
mation in association studies and provide additional evi-
dence about the strength and nature of the associations.
Once a collection of SNPs has been discovered and geno-
typed over a gene locus, a chromosomal region or even
the entire genome, they can be organised sequentially into
haplotypes. This should allow sequential haplotype scans
for two, three, four, five or more SNPs on fragments of
DNA ranging from 10 kb to 150 kb in association studies.
Sequential haplotype scanning may be able to provide a
richly detailed view of specific genomic fragments and re-
veal the inter-relationships between SNPs surrounding the
regions, thus offering an additional method for identifying
genomic fragments that harbour the variants causing the
phenotype. If the haplotype information is derived from
genotype data by using computational methods, it needs
to be noted that the accuracy of such haplotype informa-
tion is decreased with decreasingd LD and increasingd
ambiguity between markers.

Our observations also have potential implications for
linkage studies involving SNPs. Currently, approximately
400 microsatellite markers are used for genome-wide link-
age scans to localise regions harbouring disease genes, with
an average genetic distance being approximately 10 cM.
Because of the remarkable advances in the technologies
for SNP identification and genotyping, it is proposed that
it may be more efficient to use 1500–2000 SNP markers
to replace microsatellite markers in a typical genome scan.
The combined polymorphic information content from
several highly informative SNPs within a region may be
equivalent to the polymorphic information content from a
single multi-allelic microsatellite marker. For a locus with
n biallelic variable sites, the maximum number of haplo-
types is n +1 in the absence of recombination, repeated or
back mutations, whereas the potential number of haplo-
types could reach 2n if there is linkage equilibrium be-
tween polymorphic sites. We observed 7 and 21 haplo-
types for the five SNPs over the NAT2 locus and the 
X chromosome locus, respectively, in the populations stud-
ied, reflecting the different magnitudes of LD operating
over the 850-bp and the 140-kb regions. The haplotype
heterozygosity (H) in the X chromosome region (H=0.82,
based on the artificial diploid data) is higher than that at
the NAT2 locus (0.69), although the opposite is true for
average H of individual SNPs over the two regions (0.31
and 0.48, respectively). This is consistent with the strong
negative correlation between the mean pair-wise LD and
haplotype heterozygosity, supporting the concept that the
stronger the non-random association between SNPs, the
lower the information added by each SNP to a set of other
SNPs (Cambien et al. 1999). On the other hand, some in-
formation will be lost because of the ambiguous haplotyp-
ing of multiple SNPs, if linkage equilibrium is reached
between SNP sites (Hodge et al. 1999; Hoh and Hodge
2000). A fine balance of LD between multiple SNP sites
is therefore required to obtain the maximum information
within a genomic region and the knowledge of the extent
and magnitude of LD between SNPs should be invaluable
in the selection of the SNP set for linkage analysis.

This study indicates that computational methods can
provide an effective prediction of haplotype frequencies by
using genotype data from unrelated individuals for genomic
regions with LD. Computational algorithms could give ef-
fective and accurate prediction for haplotype phases in re-
gions with high values of LD between markers and a small
probability of recombination events. The EM and PHASE
algorithms are better computational methods than the sub-
traction method, both in estimating haplotype frequencies
and in predicting haplotype phases. Our observation may
shed some light on alternative statistical approaches in as-
sociation studies and linkage studies with SNPs.
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