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Abstract 

 
The composite linkage disequilibrium (LD) measure is often calculated for two-locus 

genotypic data, especially when coupling and repulsion double heterozygotes cannot be 

distinguished. This measure has been reported to have good statistical properties and was 

suggested for routine testing of LD regardless of Hardy-Weinberg equilibrium at either of 

two loci [Weir, 1979, Schaid, 2004]. However, the bounds for this measure have not been 

yet reported. These bounds are derived here as functions of one-locus genotype or allele 

frequencies. They provide standardized measures of composite linkage disequilibrium 

defined as the proportion of its maximum attainable value given observed allele or 

genotype frequencies. 
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Introduction 

 

Calculation of the composite disequilibrium coefficient, AB∆ , for measuring association 

between alleles A and B at two loci is a routine step in analysis of multilocus genotypic 

data [Weir 1979, Weir and Cockerham, 1979, Weir, 1996]. Definition of the composite 

coefficient is , where  is the frequency of gamete BABAABAB ppPP 2/ −+=∆ ABP AB , 

 is the joint frequency of alleles A and B at two different gametes, and  are the 

frequencies of alleles A and B at two loci [Weir 1996]. This coefficient is directly 

estimated from two-locus genotypic data and under random mating corresponds to the 

usual measure of linkage disequilibrium, 

BAP / BA pp ,

BAABAB ppPD −= . This is because the non-

gametic frequency reaches the equilibrium BABA ppP =/  after one generation of random 

mating. Weir [1996] suggests the definition in which the focus is on two alleles at a time, 

A, B, and other alleles at these two loci are combined and collectively referred to as 

with frequencies ba, )1(),1( BA pp −− . Weir [1996] defines the correlation coefficient, 

, which is one possible normalization of 2
ABr AB∆ , 
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where  are the estimates of Hardy-Weinberg disequilibrium coefficients and BA DD ˆ,ˆ

BA pp ~,~  are sample allele frequencies at loci A,B.  It is most useful in that it directly 

relates to the asymptotic chi-square test statistic with one degree of freedom for testing 

the hypothesis . The relation is , where n is the number of individuals 

in the sample. Constraints for the frequencies of genotypes and alleles at each locus 

0=∆ AB
22
ABAB nrX =
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impose bounds for the minimum and maximum values of . As the result, the range of 

possible values of  is smaller than (-1 to 1). In certain situations, it might be is useful 

to report values of  as the proportion of its maximum possible value, . For 

example, Clark et al. [2003] evaluated the distribution of this standardized measure 

across 4,833 SNPs in the human genome, however they obtained the bounds ( ) 

numerically. The purpose of this report is to derive the bounds on 

2
ABr

2
ABr

AB∆ max∆

max∆

AB∆ . The standardized 

measure is defined as  and ranges between –1 and 1. The standardization 

makes the new measure independent of single locus frequencies, in the sense of the range 

that the coefficient can take. The allele frequencies are very much part of the usual 

normalized LD defined in the same way, , [Hedrick, 1987, Lewontin, 

1988] and it would be mistaken to interpret either  or 

max/∆∆ AB

max
/ / DDD ABAB =

/
ABD max/∆∆ AB  as being free of 

dependencies on the allele or genotype frequencies.  

 

Statistical Methods 

 

Using the notation of Weir [1996], the composite LD coefficient is estimated from di-

locus counts and sample allele frequencies as 

 BAAaBbAaBBAABbAABBAB ppnnnn
n

~~2)
2
12(1ˆ −+++=∆                        (1) 

where n is the number of individuals in the sample, and  denote di-locus 

sample genotype counts. One way to derive bounds for the sample value of  is to use 

AaBbAABB nn ,...,

AB∆
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the relation  where )2/(),(ˆ 2nCAB yx=∆ ∑∑∑ ===
−=
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are vectors of genotype values for two loci, re-coded as yx,
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=

  bb is genotype if1
 Bb is genotype if0

BB is genotype if1

  aa is genotype if1
Aa is genotype if0
AA  is genotype if1

ii yx  

The correspondence between  and  can be shown by writing the composite 

LD coefficient in an alternative form: 
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Sums in can be written in terms of the genotype counts as  ),( yxC
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Therefore, ))(()(),( BBbbAAaaaabbaaBBAAbbAABB nnnnnnnnnC −−−+−−=yx .  Dividing this 

by , the relation to the composite LD as defined in (1) is .  22n )2/(),(ˆ 2nCAB yx=∆

 

Sample allele frequencies are related to ,  as follows: ix iy
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Therefore, by taking expectations of these expressions, Ai pxE 21)( −=  

and . It can be further verified that Bi pyE 21)( −=
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where  and  are Hardy-Weinberg disequilibrium 

coefficients [Weir, 1996] and  are frequencies of genotypes AA,…, AABB. 

Then 

2
AAAA pPD −= 2

BBBB pPD −=

AABBAA PP ,...,

 
( )( )BBBAAA

AB
ii DppDpp

yx
+−+−

∆
=

)1()1(
),(Corr  

The indicator variables ,  are 1 minus the sums of those given by Weir [1979], 

and . These variables keep track of the number of copies of A and B 

on the two gametes. Weir showed that the correlation of the sums is the same as the 

expression for . 

ix iy

)( 21 ii xx + )( 21 ii yy +

),(Corr ii yx
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When , the pairs 0ˆ >∆ AB }1,1{ −=−= ii yx  and }1,1{ == ii yx  increase the resulting 

value of the cross-product, , while the pairs ii yx∑ }0,1{ =−= ii yx ,  do 

not add to the value, and the pairs 

}1,0{ −== ii yx

}1,1{ −== ii yx , }1,1{ =−= ii yx  decrease the value. 

This suggests a way to derive the bounds for  by finding the permutation of x relative 

to y that will maximize the absolute value of , or equivalently, . These 

bounds are for fixed one-locus counts. The permutation should maximize the number of 

 pairs with the same sign of  and  and distribute the remaining  with  in 

such a way that will not decrease the value of the cross-product. The second term 

in , i.e. the product , is not affected by the way the vectors are 

permuted. When , the pairs are arranged in a way that maximizes the 

number of pairs with the different sign for  and .  

AB∆̂

AB∆̂ ),( yxC

},{ ii yx ix iy ix iy

),( yxC ∑∑ ii yx

0ˆ <∆ AB },{ ii yx

ix iy

 

Consider the calculation for the case  in more detail. The maximum possible 

number of pairs of the same sign is 

0ˆ >∆ AB

                                          (2) ),min(),min( bbaaBBAA nnnnd +=

which is the sum of  the largest possible number of pairs }1,1{ −=−= ii yx  and 

. The remaining number of pairs is }1,1{ == ii yx )( dn − , so potentially this is the 

amount by which the value of the cross-product given by (2) can be reduced. However, 

these pairs can be arranged so that as many values of 0=ix  or 0=iy  (heterozygotes) as 
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possible are matched in pairs with the second of the two values being different from zero. 

Then the overall reduction of the  from the value in (2) is  )ˆmax( AB∆
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Therefore, the maximum value for the cross-product is )( sd −  and the bound for 
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For the case , the minimum is obtained the same way, but the value d is 

calculated as  to match  pairs with the opposite 

signs. This gives the maximum absolute value: 

0ˆ <∆ AB

),min(),min( BBaabbAA nnnnd += },{ ii yx
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Putting together, the possible values of  are bounded by functions of single-locus 

genotype counts as 

AB∆̂
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where . The second part of the bounds is a function of 

sample allele frequencies, 

),min( BbAa nndndns +−−−=

( )( ) ( )( )BABBbbAAaa ppnnnn
n

~21~21
2
1

2
1

2 −−=−− .  The 

population value as the function of one-locus population frequencies is 

 

( )( )

( )( )
0,

),min(),min(  where

2121
2
1

2

0,
),min(),min(  where

2121
2
1

2

max

max

>∆
⎪⎭

⎪
⎬
⎫

+=

−−−
−

=∆

<∆
⎪⎭

⎪
⎬
⎫

+=

−−+
−

=∆

AB

bbaaBBAA

BA

AB

BBaabbAA

BA

PPPPd

ppsd

PPPPd

ppsd

                      (4) 

and . ),1min(1 BbAa PPdds +−−−=

 

The sample standardized value with bounds as given in (3) is .  max
/ ˆ/ˆˆ ∆∆= ABABδ

 

Comparison of Standardized Coefficients 

 

The correspondence between the values of  (maximum likelihood estimator based on 

the HWE assumption) and the standardized composite LD in large samples should be 

noted. The problem with the direct comparison of  and  is that  bounds are 

for the fixed frequencies of alleles, whereas  bounds are for the one-locus frequencies 

of genotypes. In this sense,  is more comparable to  which incorporates variances 

that include one-locus deviations from HWE. Numerically,  and  coefficients are 

closely correlated, although  is more stretched because it can still reach extreme (-1 to 

1) values even if allele frequencies at two loci are unequal. This is not necessarily a virtue 

/ˆ
ABD

/ˆ
ABδ /ˆ

ABD /ˆ
ABD

/ˆ
ABδ

/ˆ
ABδ ABr

/ˆ
ABδ ABr

/ˆ
ABδ



 10

of the standardized measure ( ). The coefficient  has well-defined statistical and 

population-genetic properties. It is useful in contexts where an allele at one locus is to be 

regarded as a proxy for an allele at another locus, for example during the selection of 

markers for association studies [e.g. Meng et al., 2003]. This requires dependency (LD) 

as well as the closeness of single-locus frequencies which is then reflected by large 

absolute values of . 

/ˆ
ABδ ABr

ABr

 

To make a fair comparison with , equation (3) is modified so that the bounds are 

calculated as the maximum possible values given frequencies of alleles rather than 

genotypes. In this case the standardized composite LD can be compared to  directly. 

To obtain these bounds, the new values of 

/ˆ
ABD

/
ABD

)2/()( nsd −  in (3) should be computed. This 

is done by replacing the single-locus counts in d with their maximum values given the 

counts of alleles and noticing that in this case dns −= , so that 

. Then the bounds are )2/()2()2/()( nndnsd −=−
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After expressing counts via sample frequencies, this further simplifies to 
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Therefore, these bounds are twice the bounds for .  /
ABD

 

Define the standardized coefficient as , when the bounds  are 

computed for the fixed allele frequencies, using (5). When the population is in HWE, the 

two estimators are related as . The reason for the  value to be twice as 

small is that the composite disequilibrium is a sum of the usual LD, measured by  

plus the covariance between alleles at two different chromosomes, . This second 

term is zero if the population is in HWE, however the maximum value of  still needs 

to account for . One can only claim that 

max
/ ˆ/ˆˆ ∆∆=∆ ABAB max∆̂

2/ˆˆ //
ABAB D≈∆ /ˆ

AB∆

ABD

BAD /

AB∆

BAD / AB∆  reached a certain proportion of its 

maximum value, without attributing that proportion to either the gametic or the non-

gametic part. 

 

The allele frequencies in  and  are estimated in the same way, therefore the 

efficiency of these two coefficients in estimation of the population value of  is 

largely determined by the performance of the corresponding LD estimators. Schaid 

(2004) argued for superiority of the composite LD by examining properties of the test 

. Therefore it is expected that  performs well compared to .  When 

the population is not in HWE,  is still a valid estimator for  where 

the second term is the normalized . Not unexpectedly,  is not an appropriate 

estimator. Figure 1 is an illustration of this. To create each data point on the graphs, ten 

possible di-locus population genotype frequencies were drawn from the Dirichlet 

/ˆ
AB∆ /ˆ

ABD

/
ABD

0:0 =ABDH /ˆ
AB∆ /ˆ

ABD

/ˆ
AB∆ 2/)( /

/
/

BAAB DD +

BAD /
/ˆ
ABD



 12

distribution with all ten parameters equal to ¼ prior to obtaining each multinomial sample 

of 500 individuals. The Dirichlet(¼,…,¼) sampling creates a nearly uniform (-1 to 1) 

distribution of  and  across populations from which each multinomial sample is 

obtained. Figure 2 is a similar plot with all population disequilibrium due to the gametic 

part, . Such populations are created by sampling four gamete frequencies from the 

Dirichlet(1,1,1,1) distribution and pairing them at random. The resulting distribution of 

 is close to uniform on (-1 to 1). The estimator  was obtained by numerically 

solving the likelihood formed under the assumption of HWE. Such solution is feasible in 

the case of two loci and is preferred to the common alternative using an EM algorithm 

[Weir, Cockerham, 1979]. 

/
ABD /

/ BAD

ABD

ABD /ˆ
ABD

 

Under HWE (Figure 2) the coefficient  is estimating half of the gametic LD term, 

. Both figures imply that  is performing well as an estimator of the population 

value, , while  is taking many possible values between 

 and 1 when the population is not in equilibrium. Performance of  

 further improves with the increased sample size (data not shown). Note that Figure 1 

sampling of di-locus genotypes results in deviations from equilibrium at the level of two 

loci, which includes non-zero , single-locus HWE deviations, as well as the higher 

order disequilibria. Weir [1996] gives definitions of all corresponding coefficients. Thus, 

 estimator appears to perform well even when two-locus frequencies deviate from 

the equilibrium conditions. 

/ˆ
AB∆

2//
ABD /ˆ

AB∆

2/)( /
/

/
BAAB DD + )ˆ(abs /

ABD

2/)(abs /
/

/
BAAB DD +

/ˆ
AB∆

ABD

/ˆ
AB∆
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Discussion 

 

As with the usual normalized LD coefficient, , caution should be taken when values 

of  or  are compared for two pairs of loci, or when values for the same pair of 

loci are compared between different populations. Similar evolutionary forces will not 

guarantee that normalized coefficients should attain similar values given two different 

sets of allele frequencies [Lewontin, 1988]. Indeed, it is the values at the bounds that are 

completely determined by the single-locus parameters, and values in the middle remain 

indeterminate. Nevertheless, the standardized coefficient can be useful in the sense of its 

definition – as the proportional measure of strength of association between alleles at two 

loci.  

/
ABD

/
AB∆ /

ABδ

 

It is worthwhile to note that the inter-gametic coefficient  can be non-zero if 

sampling is conditional on the phenotype, such as the case-control sampling. If alleles A, 

B are jointly predictive for the “case” category, the value  can be non-zero among 

cases, even if the population value is zero. If the prevalence of the case category is w, the 

“allelic prevalence” for the allele A can be defined as 

BAD /

BAD /

∑= j AjAjA wPw , where j indexes 

genotypes and  are the genotype frequency and its susceptibility. Suppose the 

case probability for the individuals carrying both alleles A and B is . Then, among 

the cases, 

AjAj wP ,

BAw ,

2
,/

/ w
wwppwwP

D BABABABA
BA

−
=  which is non-zero if BABA www ≠, . Similarly, 

 in cases can be away from the population value. The composite coefficient as well ABD
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as its standardized value can be examined in cases and compared to disequilibrium in 

controls or the population value. On the other hand, when the gametic phase in unknown, 

the likelihood (with HWE assumption) used for the calculation of  and , e.g. by 

the means of EM algorithm, is generally not suitable for evaluation of disequilibrium in 

cases. This is because the equilibrium proportions in cases (including single-locus HWE) 

are likely to be distorted [Nielsen et al., 1999]. Schaid [2004] showed that in such 

situations the incorrect HWE assumption can lead to grossly biased results of the test 

, with either extremely conservative or liberal type-I error rates. On the 

other hand, tests based on the composite coefficient have optimal power and maintain the 

correct size.

ABD̂ /ˆ
ABD

0:0 =ABDH
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Figure legends 

 

Figure 1. Left figure: plot of the population value of  vs. the sample 

value of . Right figure: plot of the population value of  vs. the 

sample value of . 
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Figure 2. Left figure: plot of the population value of  vs. the sample value of . 

Right figure: plot of the population value of  vs. the sample value of . 
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Figure 1. 
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