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Abstract 
 

Identifying genetic variations predictive of important phenotypes such as disease susceptibility, 

drug efficacy and adverse events remains a challenging task. There are individual polymorphisms 

that can be tested one at a time, but there is the more difficult problem of identification of 

combinations of polymorphisms or even more complex interactions of genes with environmental 

factors. Disease, drug, or side effects can result from different mechanisms. Identification of 

subgroups of people where there is a common mechanism is problem for diagnosis and prescribing 

of treatment. Recursive partitioning, RP, is a simple statistical tool for segmenting a population into 

non-overlapping groups where the response of interest, disease susceptibility, drug efficacy and 

adverse events, is more homogeneous within the segments.  We suggest that the use RP is not only 

more technically feasible than other search methods but it is less susceptible to multiple testing 

problems. The numbers of combinations of gene-gene and gene-environment interactions is 

potentially astronomical and RP greatly reduces the effective search and inference space. 

Moreover, certain reliance of RP on the presence of marginal effects is justifiable as we find by 

using analytical and numerical arguments. In the context of haplotype analysis, our results suggest 

that the analysis of individual SNPs is likely to be successful even when susceptibilities are 

determined by haplotypes. Retrospective clinical studies where cases and controls are collected will 

be a common design. We give methods to adjust the RP analysis to reflect the population incidence 

of the response of interest. We discuss confidence limits on the incidence of the response in the 

segmented subgroups. RP is a straightforward way to create realistic subgroups and prediction 

intervals for the within subgroup disease incidence are easily obtained. 
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Introduction 

 

Despite the remarkable success in mapping single genes affecting important human traits, such as 

disease predisposition, relatively little progress has been made in finding multiple interacting genes. 

Many traits, including disease risk appear highly heritable, however often only a small proportion 

of the phenotypic variation can be attributed to a single polymorphism. The implied involvement of 

many genes is through epistatic or heterogeneous mechanisms. Unfortunately, such combinations 

of genetic polymorphisms are very difficult to pin down. When large collections of polymorphisms 

(e.g. SNPs) are screened, multiple testing becomes an important issue. Association genome scans 

may require over 100K SNPs (Goldstein et al., 2003) so the multiple testing becomes a formidable 

problem even when testing single markers for association with the trait. The goal of identifying 

genuine relationships with the trait using combinations of markers is even more difficult and many 

seemingly strong associations are likely to turn out as false positives. This is a consequence of 

increasing the prior probability of the hypothesis of no association, , as will be discussed 

later. 

)Pr( 0H

Yet another additional challenge is the characterization of the nature of the relationship 

which can be complicated and non-linear. RP is a simple datamining tool that nevertheless 

adequately handles these problems (Young and Ge, 2004). RP has been previously applied to 

genetic problems as a tool for dealing with detection of interaction and identification of 

homogeneous subgroups (Rao 1998; Zhang et al., 2000; Czika et al., 2001; Province et al., 2001; 

Shannon et al., 2001; Costello et al., 2003). However, RP can be criticized for over-reliance on the 

presence of “marginal effects”. When RP makes the first sweep through predictor variables (e.g. set 

of genetic markers), it tries to identify those variables that result in a significant association with 
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the trait. Then the data is divided into subgroups corresponding to selected predictor categories and 

the association test is repeated in the subgroups using remaining predictors. At this stage the 

interaction can be detected. Suppose the first RP split divides the sample into two subgroups with 

individuals carrying the genotype AA vs. Aa+aa. Then the test among individuals in the AA group 

can detect interaction of AA with another marker. This interaction can only be detected if the first 

split is “significant” - i.e. there is substantial “marginal” effect at the marker A. One purpose of this 

article is to illustrate that it is reasonable to assume that most interactions will induce such marginal 

effects at one or more of the markers involved in the interacting set.  From the clinical perspective, 

a most useful characteristic of a predictive set of genetic polymorphisms is its ability to provide 

estimates of the probability of an event (condition) Y, such as adverse event or disease. For binary 

trait (event present/absent, denoted by Y, N), we also describe estimates of probabilities of 

developing the condition Y given that a random individual is classified into a particular node of the 

RP tree according to its multilocus genetic profile. Along with these estimates we also give interval 

estimates. These are available by using a hold-out sample, i.e. part of the sample set aside for the 

validation purposes. 

In this paper we use frequencies of haplotypes defined by joint frequencies of SNPs on the 

same gamete to illustrate the approach and the analysis. More generally, RP is concerned with 

describing interactions among predictors. In practice, genetic data are likely to be in the form of 

diploid genotypes and haplotypes may not be directly observed. 
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Reliance on marginal effects and the RP justification 
 

Searching for sets of predictive markers results in many putative models being taking into 

consideration. In the extreme case, all possible combinations are evaluated, and a criterion such as a 

measure of statistical association is scored; the combination with the best score is taken. This 

combination may be examined in an independent follow-up study to verify that it is not a “false 

positive”. If there are k markers to start with, there are k(k-1)/2 pairs, and at most L = 2k-1 

combinations including individual markers, all possible marker pairs, triples, and so on. A 

considerable problem with this approach is that the probability of a false positive increases with the 

number of combinations. The probability that a p-value of p or smaller represents a false positive is 

related to the false discovery rate, FDR (Morton 1998, Storey, 2002). At a given fixed value of p, 
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where F(p) is the p-value cumulative distribution function under the alternative hypothesis, which 

reflects the power. For example, with the chi-square test, , where 

, are the cumulative distribution functions of central and non-central chi-square 

correspondingly, and d denotes the degrees of freedom. Suppose statistical tests and their p-values 

are used to rank the hypotheses and that there is a single “true” association, H
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hypotheses, H0. Then the probability that a randomly picked hypothesis represent a false discovery 

is .  Let L(FDR) = FDR/(1-FDR). This is an increasing function of FDR. Using 
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One interpretation of this formula is that the power gained by considering combinations must 

increase more sharply than the number of combinations, L, otherwise FDR is going to increase.  If 

L is an exponential function of the number of markers, k, the condition that FDR should not 

increase is difficult to achieve. Practically, this means that when L is large, the chances that a 

claimed association turns out to be a false positive are high. 

For example, assume the power to detect a single true combination at α =0.05 is 80%.  Our 

analysis depends on the definition of a “true combination” and for illustrative purposes we assume 

there is only a single subset. One can use a different definition that every subset that partially 

overlaps with the combination of interest does represent a true discovery, which will reduce L in 

half. If we start with k=10 markers and examine all L=2k-1=1023 combinations, then among p-

values of 0.05 or smaller 98% are going to be false positives, with the assumption of a single true 

combination. 

Note that simple multiple testing correction alone does not easily get around this problem: 

suppose the testing is at Bonferroni-corrected α =0.05/1023 and we look at the proportion of false 

positives among p-values as small as 0.05/1023≈4.5×10-5. Still, the proportion of false positives 

remains high, about 32%. The situation is worse with large k. For example, with k=15, the 

proportion of false positives among p-values significant after applying the Bonferroni correction 

(1.5 10× -6 or smaller) is 69%. 

This problem is very hard to get around, because the number of combinations, L, quickly 

increases with the number of markers, but the sample size does not increase correspondingly (see 

Witte et al., 2000, for requirements on that). On the other hand, RP has the implicit assumption that 

at least one of the individual markers in the “true” associated set as well as the smaller subsets 

(combinations) of markers in this set should show some degree of association. As a consequence, 
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the number of combinations remains linear as a function of the number of markers, keeping FDR 

relatively low – e.g. a tree with 3 splits will make about 3×k comparisons. 

How reasonable is the assumption that at least one of the individual effects will be present? 

We might think it is easy to come up with examples of marker interactions that preclude “marginal” 

effects. Consider the simplest possible scenario: a binary case (e.g. the presence/absence of a 

disease) and the control phenotype (Y,N) and two diallelic loci (two binary predictors), x1 = {0,1} 

and x2 = {0,1}. 

Consider a situation where allele “1” has to be present at both markers in order for the 

disease risk to be high. This is a clear case of interaction; however the “case” category is likely to 

be enriched with the alleles of type “1” at both markers compared to controls. A more subtle and 

seemingly “no-marginal effects” scheme is the following: “1,1” or “0,0” combinations are both 

associated with high risk, whereas “0,1” and “1,0” have low risk. Similar situations have been 

considered as justification for methods that go after “pure interactions”. Jannot et al. (2003) 

considered such interactions for the case of genotypic interactions where the penetrance array is 

3 3 for two loci. They evaluated the approach of analyzing all 2× k – 1 marker combinations, 

obtaining p-values associated with the best combination by a permutation algorithm. Lin et al. 

(2004) took a similar approach using transmission disequilibrium tests. They state that because of 

the usage of the permutation approach to multiple tests “the gains from considering haplotypes in 

our exhaustive allelic method are not overshadowed by the penalty paid for doing far more tests”. 

These approaches assume that the accurate type-I error protection through permutations is balanced 

with the appropriate increase in power provided by considering the proper subset. Ritchie et al. 

(2001) proposed an algorithm that starts with a multi-dimensional table that allows for all possible 

interactions for a given subset of markers. The multi-dimensional table is represented by one of 2k – 
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1 combinations of k markers. Then high-risk cells are pooled into one group and low-risk cells into 

another group and a cross-validation is used to access robustness of the reduced model. A 

“combinatorial partitioning method” (CPM) proposed by Nelson et al. (2001) evaluates all 

partitions of a cells (multilocus genotypes) into b groups. The number of partitions is given by 

, which is substantially larger than the number of marker subsets. For 

example, with three diallelic markers there are 2

ab
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3 – 1 = 7 marker subsets that could be tested 

separately. However, assuming we start with the binary classification at each locus and a = 23 

multilocus combinations, there are 127 ways to partition the genotypes into two groups, and 966 

ways to partition into three. Another combinatorial algorithm by Tahri-Daizadeh et al. (2003) 

considers increasingly complex models and evaluates proposed models on the basis of information 

criterion (Akaike, 1974). For quantitative traits, Culverhouse et al. (2004) proposed a modification 

of CPM that reduces this number of putative models by successfully merging cells with similar 

values of response. Such short-cut algorithms may consider a single model after the collapsing is 

finished. Significance levels are adjusted accordingly by a permutation algorithm. Nevertheless, the 

null distribution obtained via permutations essentially accounts for the number of looks through the 

data. This can be thought of as the adjustment by the “effective” number of tests, . LLe ≤

While methods optimized for discovery of pure interactions are important, even the most 

contrived penetrance configurations allow for marginal effects – the feature exploited by the RP. 

The advantage of the RP method is in drastically reducing the number of potential models, thus 

lowering Pr(H0) in (1) and therefore reducing the probability of a false discovery. Cordell and 

Clayton (2002) proposed a stepwise logistic-regression procedure for evaluation of the effects of 

the different polymorphisms within a gene. Curran (2003) compared such approach using the 

combination of forward and backward selection with the performance of RP. She found remarkable 
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similarity between the two methods in terms of the predictive power and the effects and 

interactions entering the final model. 

Returning to the “no-marginal effects” scheme (“1,1” / “0,0” vs. “0,1” / “1,0”) it may seem 

that all alleles are going to be present at equal frequencies in both phenotype groups. However, this 

is generally not the case and it is possible to discover such haplotype-trait associations by looking 

at just a single marker. The single marker effect may be smaller than a multilocus effect, however 

the reduction in degrees of freedom or the number of tests may balance reduction in the effect 

magnitude. 

The four possible haplotypes formed by the two SNPs are X={00,01,10,11}, with 

frequencies P = { p00, ..., p11}. Four haplotype penetrance values are 

{ })11|Pr(),...,00|Pr( 1100 ===== XX YY γγΓ  

With random pairing of haplotypes and multiplicativity, the population prevalence of Y is 

∑==
ji

ijijp
,

)Pr( γγ Y          (3) 

In terms of the two SNPs that constitute a haplotype, the values ijγ  define two-locus interactions 

with respect the binary phenotype. For example a high value of Pr(Y  | X=11) relative to γ   

indicates that both x1=1 and x2=1 are required for this probability to be above the population 

average. Suppose we have allele information at one of the markers, x1. Then the association can be 

detected if the penetrance of one of the alleles, e.g. )1|Pr( 11 ==• xYγ  is different fromγ . This 

marginal allele penetrance value is 
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using the allele probabilities among the case and the control groups: 
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In turn these are calculated from the frequencies of haplotypes and the penetrance values as 
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Equation (4) can also be written as 

 
1011

10101111
1 pp

pp
+
+

=•
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When γγ ≠•1 , the marginal effect of a SNP can be detected. Thus in general this effect depends not 

only on the haplotype penetrances but on the population frequencies of the haplotypes as well. 

Looking at the “no marginal effect” difference, 

 01 =−• γγ           (6) 

it can be seen that for a plausible “pure interaction” penetrance configuration, 

)()( 10011100 γγγγ =≠= , the additional requirement on the population frequencies of haplotypes is 

such that the two pairs of frequencies should match: 

          (7) { 10011100 , pppp == }

As an example let the haplotype penetrance array { }11100100 ,,, γγγγ  be { }9.0,2.0,2.0,9.0=Γ , 

which may seem to imply that an SNP effect is unlikely, because of the “orthogonal” structure of 

. As often happens in reality, one of the four haplotypes can be of relatively high population 

frequency. In that case the marginal (SNP) effects can be quite pronounced, as can be seen from 

two following examples: 

Γ
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Example 1. Consider a situation when one of the low penetrance haplotype has a high 

frequency, P = {0.05, 0.05, 0.85, 0.05}. In this case,γ  = 0.27 and •1γ  = 0.55. The frequencies 

among the cases and the controls are Pr(x1=1 | Y) = 0.204 and Pr(x1=1 | N ) = 0.062 corresponding 

to the loge of relative risk of 1.191. 

Example 2. Now suppose that one of the high penetrance haplotypes has a high frequency, 

P = {0.05, 0.05, 0.05, 0.85}. The values become γ  = 0.83 and •1γ = 0.55. The frequencies among 

the cases and the controls are Pr(x1=1 | Y) = 0.066 and Pr(x1=1 | N) = 0.265 corresponding to the 

log relative risk of -1.39. Such value provides 99% power (at α =0.05) with samples of 160 cases 

and 160 controls. 

Allelic penetrance equation (5) can be easily generalized to multiple genetic loci. Let “j” 

index all possible haplotypes that contain allele “1” at the locus of interest. Then the marginal 

effect associated with allele “1” is 

 
∑
∑

=•

j j

j jj

p

pγ
γ 1         (8) 

where the denominator gives the frequency of “1”. The condition of no marginal effect associated 

with allele ''1'' is again γγ =•1 . 

Example 3. As a three-locus illustration using RP, consider three diallelic loci, x1, x2, x3, 

with eight possible haplotype combinations, {000,001,...,111}, with penetrances and population 

frequencies sampled from the Dirichlet(1/4, ..., 1/4) distribution, as given in Table 1. 
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Table 1. Population parameters for the RP example 

 

Haplotype   Penetrance   Population frequency

000   0.9   0.010668810  

001   0.1   0.000005347 

010   0.1   0.000000255 

011   0.1   0.446030100 

100   0.1   0.016740010 

101   0.1   0.477861900 

110   0.1   0.007107833 

111   0.9   0.041585780 
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In this example there are two high risk haplotypes (000 and 111) carrying different alleles. By 

looking at the penetrance values alone, a technique that relies on the marginal effects associated 

with one of the three SNPs may appear unlikely to be successful. For simplicity, we considered a 

haploid population and sampled 250 case and 250 control haplotypes. A sample RP tree using 

HelixTree is shown in Figure 1. HelixTree® is a software system that uses recursive partitioning 

algorithms customized to the field of genetics (www.goldenhelix.com). 
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Figure 1: “No marginal effects” RP tree with 3 predictors;  ‘x1’, ‘x2’, ’x3’ – predictor (SNP) labels; 

‘n’ – node-specific sample size; ‘u’ – node-specific mean response value (proportion of cases in the 

node; ‘P’ – association p-value; ‘bP’ – Bonferroni-corrected association p-value (adjusted by the 

number of non-monomorphic SNPs at the current split) 

 14



First split is on x3 with p-value , signifying substantial effect associated with this SNP. 

Allele “0” at this SNP appears predictive of the cases with the sample prevalence increasing from 

0.5 in the root node to 0.86 at the first split. Following splits yield even smaller p-values. It appears 

that as the interaction is successfully uncovered; p-values can still get progressively smaller even 

though the sample size is decreased. The right branch involving all three SNPs is significant with p-

value  pointing that there is substantial interaction among SNPs, i.e. “haplotype effect”. 

So, even in this odd situation RP found one haplotype perfectly (x

4106.4 −×

17101.1 −×

1=x2=x3=1). It also found two of 

the three alleles defining the second high penetrance haplotype (x1=x2=x3=0). 

To examine the “no marginal effect” condition in more detail, reorder the haplotype classes 

in a way that the first i=1,...,k of the total of m haplotypes contain the SNP of interest. For example, 

suppose we are looking at the effect of allele “0” at the first SNP in Table 1. Then i=1,...,3. 

Marginal penetrance of allele “0” is 

∑
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Marginal penetrance of allele “1” (or all remaining alleles) is 
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and the population prevalence is 
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The condition of “no marginal effect” can be expressed as 
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Consider some specific situations. 

 15



1. Obviously, the equality holds when all susceptibilities iγ  are the same. 

2. Next, assume very high haplotype diversity. In the extreme, pi = 1/m for all i. In this case 

(12) simplifies to ∑∑ +== −
=

m

ki i
k

i i km
k

11
γγ . If markers are diallelic, k=m/2, then (12) 

simplifies to . The “pure interaction” penetrance considered above with 

the condition given in (7) corresponds to this case. 

∑∑ +==
=

m

ki i
k

i i 11
γγ

3. To examine the “orthogonal penetrance” case across various frequencies of haplotypes, we 

simulated the penetrance configuration similar to the given in Table 1 with haplotype 

population frequencies following the Dirichlet(1) distribution. In each of 50,000 simulations 

we uniformly sampled penetrances of high risk haplotypes (000, 111) between 0.2 and 0.9. 

Penetrances of low risk haplotypes were set equal to each other and sampled from the 

interval (0, 0.1) at each simulation.  Figure 2 shows the simulation results. Haplotype and 

SNP risk distribution refer to the risk of high susceptibility haplotype or SNP, relative to the 

population prevalence that is specific to a particular simulation run. We denote this quantity 

by RRP: “risk of a genetic variant relative to the population prevalence”. The overall 

distribution of the population prevalence as well as the prevalence among the carriers of a 

susceptibility SNP is given in the second row. The 95% quantile of the population 

prevalence is 0.326. However, the last graph (SNP penetrance) is shifted to the right relative 

to the prevalence distribution, and 25% of its distribution is above the 95% quantile for the 

population prevalence, indicating the presence of effects associated with SNPs. 

4. Many penetrance configurations, e.g. the case of a single highly penetrant haplotype will 

induce marginal effects associated with SNPs. Note that even if the equality (12) holds for a 

particular SNP, the indices (i = 1,…,k,  i = k+1,…,m) would need to be rearranged each time 
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a different SNP is considered, which is likely to result in the marginal effect at one of the 

SNPs. A situation we examined numerically is when there is one high frequency haplotype 

with the frequency p/ and the penetrance , while other haplotypes are relatively rare. 

When all haplotypes except p

/γ

/ are of the same frequency, the condition (12) becomes 

( ))1(
)2(

)1( //
/

mbam
mb

mba
ap

−++
−

−
−++

=
γγ

, where ∑=
=

k

i ia
2
γ and . The 

following results are based on 150,000 simulations. 

∑ +=
=

m

ki ib
1
γ

• The high susceptibility haplotype has the lowest frequency (Figure 3). Mean SNP 

relative risk (RRP, as defined above) was 1.903. Mean haplotype RRP was 5.843. 

Prevalence 95% quantile was 0.089. Proportion of SNP penetrance distribution 

above that value was 0.627. 

• The high susceptibility haplotype has an intermediate (random) but never the highest 

frequency (Figure 4). Mean SNP relative risk was 2.076. Mean haplotype RRP was 

5.269. Prevalence 95% quantile was 0.097. Proportion of SNP penetrance 

distribution above that value was 0.695. 

• The high susceptibility haplotype has the highest frequency (Figure 5). Mean SNP 

relative risk was 1.243. Mean haplotype RRP was 1.516. Prevalence 95% quantile 

was 0.348. Proportion of SNP penetrance distribution above that value was 0.170. 
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Figure 2: Results of simulations with two “orthogonal penetrance” (000, 111), high risk, random 

frequency haplotypes. 
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Figure 3: Results of simulations with a single high risk lowest frequency haplotype. 
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Figure 4: Results of simulations with a single high risk random frequency haplotype. 
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Figure 5: Results of simulations with a single high risk highest frequency haplotype.  
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Examples and simulation results presented in this section suggest that even in situations where the 

penetrance configuration is in favor of no marginal SNP effect, there needs to be a very specific set 

of population frequencies of haplotypes in order for the marginal effect to be absent. We considered 

highly interacting models so that the effect of a high penetrance joint set of predictors (e.g. 

“haplotype”) is expected to be larger than that of an SNP. Nevertheless, one would need to balance 

the potential increase in the effect size with the number of looks through potential models. In this 

light, an analyst using the RP algorithm makes a very reasonable “bet” that marginal effects are 

going to be present among the markers that form the best predictive combination. The multiple 

testing implication of this sequence of order k searches is the reduction in the false discovery rate. 

An interesting observation from Figures (3-5) is that the difference in magnitude between 

the haplotypic and SNP effects decreases as the frequency of the high-penetrance haplotype 

increases. It follows that “common” susceptibility haplotypes can be mapped by looking at 

individual SNP associations. The relative risk discrepancy is higher for rare susceptibility 

haplotypes. This case deserves further consideration. Low frequency of high risk haplotypes 

implies problems with frequency estimation in the case of unobserved haplotype phase, as well as 

lack of statistical power for analysis using haplotypes as predictors. In this case, the relatively 

higher frequency of SNPs may still provide better power despite the smaller effect size. 
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Predictive values and interval estimation 
 

Samples from clinical trials are likely to be cast in case-control form. To optimize power, 

observations may be collected in pairs, one case and one control, so the proportion of cases in the 

sample may be considerably different from the population prevalence, 0φ = Pr(Y). It is desirable 

and possible to estimate genetic susceptibility (penetrance) associated with a genetic marker M for 

the population. Suppose one of the genotypes (AA) is considered. Then 1ϕ  = Pr(Y | AA) is obtained 

using the relation 

qp
p

)1( 00

0
1 φφ

φ
φ

−+
=          (13) 

where p = Pr(AA | Y), and q = Pr(AA | N ). An estimate  is obtained by plugging in estimates of 

p,q, using sample frequencies of AA in cases and controls, . If the genotype AA is predictive of 

Y, then  is the positive predictive value (PPV) of AA. 

1̂φ

qp ˆ,ˆ

1̂φ

Quite usefully, the very first split of a RP tree allows to calculate  directly. Figure 6 

shows a two-level tree where the first split is made based on the presence of a predictive marker M. 

1̂φ
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Figure 6: Sample RP tree 

n0, u0: sample size and the proportion of cases in the whole sample 

ni, mi: node-specific numbers of subjects in the right and the left nodes 

ui, vi: proportion of cases in the right and the left nodes 

iφ : node-specific positive predictive value 
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We can classify Figure 6 observations at the first split as follows: 

  
AA  

 
AA : (Aa+aa)

Cases (Y)      n1 u1 m1 v1

Controls (N)  n_1 (1-u_1) m1(1 - v1) 
 

For multi-way RP splits, the counts in the second “not-AA” ( AA ) column are obtained by adding 

up the counts from all nodes except “AA”). The frequency estimates in cases and controls are 
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Now we can estimate susceptibilities at the first two “AA” and “Aa+aa” nodes as 
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Note that  (PPV at the right node) is one minus the quantity referred to as the “negative 

predictive value”, NPV, (Pepe, 2003) at the left (“AA”) node. 

2̂φ

Susceptibility estimation can proceed to subsequent RP splits using the same approach. Consider 

, which is the probability that an individual with the genotype (“Aa or aa” and “BB”) will 

develop the condition Y,  i.e. 

3̂φ

BB)aa)AaY   and  or    (|Pr(3 =φ . The estimate is 
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where 
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Note that equation (16) is similar to (14), except that it is based on the estimates conditional on the 

previous (“AA” vs. “Aa+aa”) split. For example,  in (16) is the estimated prevalence among 

individuals carrying “Aa+aa” genotypes, whereas  in (14) is the unconditional population 

prevalence. Thus, node-specific genetic susceptibility  can be calculated recursively by using 

counts and proportions of cases at the node that give ( ) estimates, as well as the susceptibility 

at the previous split, . 
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A more direct estimate of iφ  is obtained by recursively substituting  definition into  

etc. up to . After simplification, this leads to the following general formula: 
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with products giving joint multilocus (defined by the RP branch above the node) frequencies in 

cases and controls. This expression assumes that the population prevalence, 0φ , is known or well 

estimated from the external data. When interval statements are made about , the uncertainty in iφ̂ 0φ  

may become an issue. For clarity, we will assume here that 0φ  is known, however it is possible to 

incorporate uncertainty in 0φ  into the interval estimate of susceptibility (Zaykin et al., 2004). 

The right hand side of (17) simplifies on the logit scale: 
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where  are estimated frequency of the multilocus genetic profile defining the i-th node in 

cases and controls respectively. Referring to Figure 1, node “N12”, containing 5 observations with 

the proportion of cases 0.4, the frequency of the profile (x

ii QP ˆ,ˆ

3=0, x1=1) in the cases is 

 and the frequency of that profile in the controls is 

. 

008.0250/4.05ˆ =×=iP

012.0250/)4.055(ˆ =×−=iQ

Define [ ])ˆ1/(ˆlnˆ iii φφη −= . Assuming 0φ  is constant, the variance of the logit is 
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using first-order Taylor series approximation. Assuming binomial sampling, 
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Then the estimated variance in terms of the node counts is 
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The binomial assumption in (20) implies random sampling from the case and the control population 

as well as that the tree is not built in “exploratory” mode. Typically, a tree is built using either the 

most significant predictor for a split or is “guided” by the scientist. Both situations can result in 

biased phenotypic proportions in the nodes. In this exploratory mode, the RP splits are usually 

chosen so that the association test statistic value is one of the largest among potential split variables 
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(genetic markers). The distribution of ni ui will follow the distribution of one of the first order 

statistics from the binomial distribution.  Thus, the variance calculated by (21) may be 

underestimated. If there is a hold-out sample, it can be used to validate a particular RP tree built in 

the exploratory mode and it will give unbiased estimates. Using such a hold-out sample, it is 

possible to construct confidence intervals for  estimates.  The asymptotic normal-based 

confidence interval for the logit is calculated as: 

iφ̂

 )ˆ(ˆˆ 2/ ii Vz ηη α±          (22) 

Then the interval endpoints (l, u) are inverted as u

u

e
e
+1

 and l

l

e
e
+1

, respectively to produce an 

approximate )1( α− % interval estimate of iφ . 

 

Discussion 
 

Methods for detection of association between traits and interacting genetic polymorphisms are 

being rapidly developed. Many approaches are considering important situations where haplotypes 

of consecutive markers can be defined and tested for association with the trait. This can incorporate 

different sampling designs as well as the haplotype phase uncertainty (Schaid et al. 2002; Zaykin et 

al. 2002; Stram et al.} 2003; Epstein and Satten 2003; Lin 2004). These methods are most 

successful when a relatively small set of tightly linked markers can be selected a priori – for 

example a set of physically ordered markers within a gene that could, for example, tag a common 

transcript. It is a much more complex problem to identify associations caused by markers that are 

located in different genes or genomic regions. The problem is not only of searching through 

inconceivably large number of marker combinations. Even if an effective algorithm is designed that 
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can identify the most predictive combination, the chances for it to represent a false positive are 

unacceptably high. This issue is not solved by applying stringent significance levels because of the 

reduced power. When power is low, true positives are not guaranteed to rank among the most 

significant results and can appear among the bulk of the results after sorting by the significance or 

the association statistic value. In this paper we do not distinguish between the issues of 

identification of etiological polymorphisms and the detection of markers associated with causative 

variants through the population LD. Nielsen and Weir (2001) expressed marker penetrance values 

via the actual penetrances at the susceptibility locus, allele frequencies, and LD. Unless there is 

perfect correlation between the marker and the susceptibility locus, the induced effects are expected 

to be lower at the marker, reducing statistical power. Although RP does not provide a perfect 

solution, its appealing feature is the remarkably reduced number of putative models. Given that the 

distribution of haplotype frequencies is often skewed and is unlikely to match the corresponding 

susceptibilities in the sense of satisfying the condition (12), we suggest that marginal effects at 

individual markers are likely to be expected. Moreover, the indices in the sums of that condition 

need rearrangement each time a different SNP is considered, greatly increasing chances of marginal 

effects associated with at least one of the SNPs. 

Practically, RP algorithm is computationally very efficient. The resulting partitioning tree 

provides clear biological and statistical interpretation. According to the multilocus profile, each 

individual can always be uniquely classified into one of the terminal RP nodes with readily defined 

population risks and corresponding interval estimates. 
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