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Abstract

The inverse normal and Fisher’s methods are two common approaches for combining P -

values. Whitlock demonstrated that a weighted version of the inverse normal method, or

“weighted Z-test” is superior to Fisher’s method for combining P -values for one-sided T -

tests. The problem with Fisher’s method is that it does not take advantage of weighting and

loses power to the weighted Z-test when studies are differently sized. This issue was recently

revisited by Chen who observed that Lancaster’s variation of Fisher’s method had higher

power than the weighted Z-test. Nevertheless, the weighted Z-test has comparable power

to Lancaster’s method when its weights are set to square roots of sample sizes. Power can

be further improved when additional information is available. Although there is no single

approach that is the best in every situation, the weighted Z-test enjoys certain properties

that make it an appealing choice as a combination method for meta analysis.
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Introduction

Evolutionary biologists have long used meta-analytic approaches to combine information

from multiple studies. When raw data cannot be pooled across studies, meta analysis based

on P -values presents a convenient approach that can be nearly as powerful as that based on

combining data. Many popular P -value combination methods take the same general form,

where P -value for the i-th study, pi, is transformed by some function H, possibly utilizing

study-specific weights, wi. Next, a sum is taken, and the combined P -value is computed

using the distribution of the resulting statistic, T =
∑
wiH(pi). For example, Stouffer’s (also

known as “inverse normal”) method (Stouffer et al., 1949) takes H to be the inverse normal

distribution function. Lipták’s method (Lipták, 1958) is Stouffer’s method with weights;

this method is commonly referred to as the weighted Z-test. Fisher’s method (Fisher, 1932)

sets H(pi) = −2 ln(pi). The binomial test (Wilkinson, 1951) counts the number of P -values

that are below a threshold α, in which case H is the indicator function, H(pi) = I(pi ≤ α).

Truncated P -value methods (Zaykin et al., 2002) add up P -values that fall below a threshold

α by setting H(pi) =
∑
I(pi ≤ α) ln(pi). Combined P -value can be used in support for a

common hypothesis tested in all studies, and a series of non-significant results may collectively

suggest significance.

Carefully chosen weights can, in general, improve power of combination methods. A mo-

tivation for the weighting may follow from the fact that different studies might be differently

powered, and that should be reflected by the weighting. Consider the combined P -value of

the weighted Z-test:

pZ = 1− Φ

∑k
i=1wiZi√∑k

i=1w
2
i

 (1)

where Zi = Φ−1(1 − pi); pi is a P -value for the i-th study of k studies in total, wi are

weights, and Φ, Φ−1 denote the standard normal cumulative distribution function and its

inverse. Lipták suggested that the weights in this method “should be chosen proportional

to the ’expected’ difference between the null hypothesis and the real situation and inversely

proportional to the standard deviation of the statistic used in the i-th experiment” and further

suggested that when nothing else is available but the sample sizes of the studies (ni), then

the square root of ni can be used as a weight (Lipták, 1958). Won et al. verified Lipták’s

claim more formally by showing that his test has optimal power when weights are set to the
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expected difference (i.e. the effect size) over the known or the estimated standard error (Won

et al., 2009). This method of weighting requires knowledge of anticipated effect sizes for all

combined studies, which is rarely available. Weightings by the estimated standard error or

by the square root of sample size are more feasible in practice.

When different samples are taken from similar populations, a model that assumes a com-

mon effect size and direction among samples is appropriate. The ideal approach in this case

is to pool raw data from all samples and to conduct a single statistical test. Whitlock consid-

ered such a test with its P -value and evaluated how well a combined P -value approximates

this “true” P -value (Whitlock, 2005). He evaluated Fisher’s method for combining P -values

(Fisher, 1932) as well as the unweighted and weighted Z-tests, using one-sided P -values. In-

deed, Whitlock found via simulation experiments that a weighted version of the combination

Z-test outperformed both Fisher’s and Stouffer’s methods. Nevertheless, weighted versions

of Fisher’s method exist and it had remained unclear whether the power of a weighted version

of Fisher’s method may be as powerful as that of the weighted Z-test. This issue was recently

taken on by Chen who found that Lancaster’s generalization of Fisher’s test was more power-

ful than the weighted Z-test (Chen, 2011). In Chen’s application, P -values were transformed

to chi-square variables by an inverse chi-square transformation with the degrees of freedom

equal to the sample size of the study, i.e. Lancaster’s statistic is T =
∑[

χ2
(ni)

]−1

(1 − pi)
with the distribution T ∼ χ2

(
∑

ni)
.

Both Whitlock and Chen used non-optimal weights for the weighted Z-test, setting them

to the sample sizes of the studies. The original Whitlock’s conclusions are valid, but the

weights need to be adjusted according to suggestions by Lipták and Won et al. In Whitlock’s

setup, samples that corresponded to different studies were drawn from the same population.

In this setup, the T -test based on pooled raw data can be viewed as an “ideal” test. In this

case, optimal weights for the weighted Z method are given by the square root of the sample

sizes,
√
ni. These weights are optimal in the sense that the combined P -value approximates

the P value of the test based on raw data. This can be seen from writing out a Z statistic

based on pooled raw data in terms of statistics for the individual studies. The pooled data

statistic is Ztotal =
√
nT T̄ /ŜT , where T̄ is the sample average for the total sample of size nT

and ŜT is the sample standard deviation. Suppose that we split the sample into two parts of

sizes nX , nY and calculate sample means (X̄, Ȳ ) and standard deviations (ŜX , ŜY ) separately
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for these two samples. We can write the pooled statistic in terms of the two means as

Ztotal =
nXX̄
√
nT ŜT

+
nY Ȳ
√
nT ŜT

while the weighted statistic that combines information from the two samples is

Zw =
wX

√
nXX̄

ŜX
+ wY

√
nY Ȳ

ŜY√
w2

X + w2
Y

The pieces
√
nXX̄

ŜX
and

√
nY Ȳ

ŜY
can be recovered from P -values for the two samples by the

inverse normal transformation. This statistic is the weighted Z-test for combining P -values.

We can see that Zw approximates Ztotal when the weights wX , wY are set to
√
nX ,
√
nY .

The same argument holds for more than two samples. Regarding Lancaster’s method, Chen

noted cautiously that setting degrees of freedom to the sample size of the i-th study “may not

be optimal”. It is an optimal weighting however for his simulation setup, where samples are

obtained from the same population. This follows from the fact that the chi-square distribution

for the i-th statistic approaches a normal distribution with the variance 2ni: when the degrees

of freedom are set to ni, the variance of the i-th statistic in Lancaster’s method is proportional

to the variance of the corresponding term for the optimally weighted Z-test. Thus, power

advantage of Lancaster’s method over the weighted Z method observed by Chen was at least

to some degree due to the usage of non-optimal weights for the Z method. As I will verify

by simulation experiments, power of the optimally weighted Z method at conventional 1%

and 5% levels is very similar to that of Lancaster’s method.

Chen chose Lancaster’s method in favor of an extension of Fisher’s test where weighted in-

verse chi-square-transformed P -values are added, for the reason that “the distribution of the

sum of weighted χ2 is usually unknown”. Several algorithms for obtaining this distribution

have been published however, and are freely available. Duchesne and Lafaye De Micheaux

recently described an R package that implements several approximations to that distribu-

tion as well as “exact” algorithms with guaranteed, user-controlled precision (Duchesne &

Lafaye De Micheaux, 2010). The weighted Fisher’s test is a direct χ2-based analogue of

the weighted Z-test. Therefore, I included this method into comparisons. Specifically, the

weighted Fisher’s test (the weighted χ2 test) is based on the distribution of the following
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statistic:

Fw =
k∑

i=1

wi

[
χ2

(2)

]−1
(1− pi) (2)

where
[
χ2

(2)

]−1

is the inverse cumulative chi-square distribution function with two degrees of

freedom.

Methods

For simulation experiments I followed the setup of Chen and Whitlock. I assumed a T -test

for the null hypothesis H0 : µ > 0 and values of µ from 0 to 0.1 with an increment of 0.01. For

eight studies with sample sizes ni of 10,20,40,80,160,320,640, and 1280, random samples were

obtained assuming a normal distribution with the mean µ and the variance of one. As in Chen,

power values were computed for two significance levels, α = 0.01 and α = 0.05. Weightings

by
√
ni, by the inverse of the estimated standard error (1/ŜEi), and by the standardized

effect size, (µ/ŜEi) were considered. The number of simulations was 30,000. Tukey’s plots

(Tukey, 1977) showing correspondence of combined and “true” P -values (i.e. obtained from a

statistic on pooled data) were obtained for µ = 0 and µ = 0.05. In Tukey’s plots, (X+Y )/2 is

plotted against Y −X. Large spread on the plot indicates discrepancy between the X and Y

values. Combined P -value for the weighted Fisher’s method (Equation 2) was obtained with

a function from R package CompQuadForm (Duchesne & Lafaye De Micheaux, 2010) that

implements Farebrother’s “exact” method (Farebrother, 1984). In addition, I considered

three scenarios with study heterogeneity. In the first scenario, µ value for the i-th study

was randomly drawn without replacement from the vector of values (0.01, 0.02, ..., 0.1) for

each simulation run. In the second scenario, µ was assumed fixed (0.07), and the standard

deviation value for the i-th study (σi) at every simulation step was drawn without replacement

from eight values that were equally spaced, starting from 3/4 to 2 3/4. In the third scenario,

both, µi and σi were randomly drawn for each simulation run.

Results

Tables 1 and 2 present power values for the studied tests. Table 1 that followed the setup

of Whitlock and Chen shows that the weighted Z test with weights
√
ni, 1/ŜEi, Lancaster’s
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method, and the test based on pooled data all have nearly identical power. The weighted

Fisher’s test has a slightly lower power. Table 2 shows power values for heterogeneity scenarios

as well as type-I error rates for the case µ = 0 but with a random, study-specific variance.

The total T test is no longer most powerful in this case, due to heterogeneity of effects.

Weighting by either
√
ni or by 1/ŜEi delivers the same improvement in power when only

the means are heterogeneous between studies. When there is heterogeneity of the variances,

weighting by 1/ŜEi yields a power advantage over weighting by
√
ni. Power is the highest

when standardized effects (µ/ŜEi) as used as weights. Correlations between the true and

the combined P -values were found to be at least 99% for all values of µ for Lancaster’s and

the weighted Z methods. The corresponding correlation for the weighted Fisher’s method

was lower, ranging from about 91% to 94% depending on the value of µ. Tukey’s plots in

Figure 1 show a good correspondence of P -values for the pooled data test with P -values for

Lancaster’s and the
√
ni–weighted Z methods. Lancaster’s method forms a more “snowy”

cloud and the weighted Z method P -values are somewhat closer to the true values.

Discussion

Meta-analysis of P -values generally benefits from weighting. When samples are obtained

from the same or similar populations, as in the model studied by Whitlock and Chen, the

optimal weights for the Z-test are given by
√
ni. In this case, the weighted Z-test, Lan-

caster’s test and the test based on pooled data provide very similar power. This is expected,

because Lancaster’s method approaches the weighted Z method asymptotically, as min(ni)

increases. When there is heterogeneity of variances, but the true mean is the same across

studies, weighting by 1/ŜEi is optimal, but the gain in power is not great, compared to

weighting by
√
ni (0.784 vs. 0.743 at α=5%). To an extent, power increase is small be-

cause of the large range of sample sizes. A constant sample size of n=289 would have given

the powers of 0.801 vs. 0.743 respectively, for the same assumed heterogeneity of variances,

max (σ2)/min (σ2)=13.4. When there is heterogeneity of means, Z-test that uses standard-

ized effect sizes as weights has the largest power (Lipták, 1958; Won et al., 2009), however

an application of this test requires the knowledge of µ. Note that this value needs to be pre-

specified: plugging in an estimate µ̂ obtained from the same data that was used to compute

P -values would invalidate the combination test.

In this study, one-sided P -values were assumed. Such P -values are appropriate for meta-
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analytic combination of P -values from several studies. Two-sided P -values are generally

inappropriate, because they are oblivious to the effect direction. Two-sided P -values from

two studies in which the effect direction is flipped can both be small nevertheless, resulting

in an inappropriately small combined P -value. On the other hand, combined result of corre-

sponding one-sided P -values will properly reflect cancellation of the pooled effect that would

have been observed if raw data from the two studies were combined.

Despite the fact that the mechanics of the meta-analytic process involves manipulation

of one-sided P -values, it is often the case that the final result needs to be a two-sided P -

value. For example, when allele frequencies are compared between two groups of individuals

classified based on the presence or absence of a trait, the null hypothesis is usually that the

frequency is the same, and the alternative hypothesis does not specify a particular effect di-

rection. The weighted Z-test provides an important advantage in dealing with this situation,

due to symmetry of the normal transformation. There are two possible one-sided combined

P -values for each assumed effect direction, but with the weighted Z method, the combined

P -value for the first assumed direction is the same distance from 1/2 as the combined P -value

for the second assumed direction. Therefore, one can arbitrarily assume either one of the two

directions when computing one-sided P -values, and obtain a combined one-sided P -value,

pone-sided. The two-sided combined P -value is the same regardless of the assumed direction:

ptwo-sided =

{
2 pone-sided; if pone-sided <

1/2

2 (1− pone-sided) ; otherwise
(3)

What if available individual P -values are all two-sided? Often, studies report P -values that

correspond to statistics such as |T | and |Z|, or its squared value, i.e. the one degree of freedom

chi-square. These individual P -values can be converted to one-sided before combining as

follows:

pone-sided =

{
ptwo-sided/2; if effect direction > 0

1− ptwo-sided/2; otherwise

Once again, the assumed effect direction can be chosen arbitrarily. For example, in testing

for association of an allele with a trait at a biallelic locus A/a, we can arbitrarily choose one

of the alleles , e.g. allele A. Then the “effect direction” for i-th study is positive if there

is positive correlation of that allele with the presence of the trait in that study. Once these
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one-sided P -values are combined, the result can be converted back to two-sided by Equation

(3).

Another advantage of the weighted Z test is that it can be easily extended to account

for the case of correlated statistics between studies. For the test to be valid under inde-

pendence, we need an assumption that the set of {Zi} jointly follows a multivariate normal

distribution under the null hypothesis. If cor(Zi, Zj) = rij, the modification amounts to

replacing the denominator in Equation (1) with
√∑

w2
i + 2

∑
i<j wiwjrij. The multivariate

normal assumption is often justified asymptotically, and in certain situations the correla-

tions {rij} are known. For example, when each Zi is a result of comparing group i of

sample size ni to a common “control” group of sample size n0 by the two-sample T -test,

then rij =
√

[1/(1 + n0/ni)] [1/(1 + n0/nj)] (Dunnett, 1955). In principle, a variation of the

weighted Fisher’s method can be extended to this situation, if we can assume that chi-square

statistics formed from individual P -values can be represented by squares of underlying mul-

tivariate normal variables with correlations rij. However, required computations are more

involved. First, the two degree of freedom chi-square transformation in Equation (2) would

have to be replaced with the one degree of freedom transformation. Then one would need to

compute eigenvalues of diag(
√
w) (R ◦R) diag(

√
w)T , where w is the vector of weights and

R ◦R is the matrix of squared correlations. Finally, to compute the combined P -value, one

can use the fact that the weighted sum of these correlated chi-squares can be represented

by the sum of independent weighted chi-squares with weights given by the above eigenvalues

(Box, 1954). Thus, one can use the observed weighted sum of correlated chi-squares with

weights substituted by the eigenvalues as an input to a routine for computing the cumulative

distribution of the sum of independent weighted chi-squares.

Although there is no single method for combining P -values that is most powerful in all

situations, a meta analytic setup considered by Whitlock and extended here to include study

heterogeneity is quite general, because many forms of one-sided statistics approach a normal

distribution asymptotically. Therefore, the
√
ni– or 1/ŜEi–weighted Z-test for combining

one-sided P -values can be recommended in most situations.

In this study, the weighted Fisher’s method showed slightly smaller power values compared

to other methods in this study. If absolute values or squares of T -statistics for each study

were assumed instead, as in calculation of two-sided tests, the weighted Fisher’s would have

yielded higher power values than either Lancaster’s or the weighted Z methods. As already

noted, combining individual two-sided P -values is generally not appropriate in meta-analysis,

zaykind
Cross-Out

zaykind
Cross-Out

zaykind
Cross-Out
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where the same hypothesis is tested in all studies. Combination of two sided P -values is more

appropriate when individual tests are concerned with separate hypotheses. Small combined

P -value in that case can be interpreted as evidence that one or more individual null hypothe-

ses are false. Owing to the virtue of being sensitive to small P -values, the weighted Fisher’s

method would provide good power, especially in those situations where there is pronounced

heterogeneity of effect sizes between studies.
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Table 1 Power assuming a common µ value for all samples

Method µ
α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Total T 0.01 0.034 0.093 0.209 0.382 0.580 0.751 0.882 0.955 0.986 0.997
0.05 0.129 0.262 0.450 0.650 0.807 0.917 0.970 0.991 0.998 1.000

Lancaster’s 0.01 0.034 0.093 0.208 0.382 0.579 0.750 0.882 0.955 0.986 0.997
0.05 0.129 0.261 0.449 0.649 0.806 0.915 0.970 0.991 0.998 1.000

Weighted Z 0.01 0.034 0.093 0.208 0.383 0.579 0.750 0.882 0.955 0.986 0.997
(by
√
n) 0.05 0.129 0.261 0.450 0.649 0.807 0.916 0.970 0.991 0.998 1.000

Weighted Z 0.01 0.034 0.094 0.209 0.384 0.579 0.750 0.883 0.954 0.986 0.997

(by 1/ŜE) 0.05 0.129 0.262 0.451 0.649 0.807 0.915 0.970 0.991 0.998 1.000
Weighted χ2 0.01 0.031 0.082 0.183 0.339 0.530 0.702 0.848 0.936 0.978 0.994

(by
√
n) 0.05 0.121 0.242 0.420 0.611 0.774 0.892 0.957 0.987 0.997 0.999

Weighted χ2 0.01 0.032 0.084 0.184 0.341 0.532 0.705 0.849 0.936 0.978 0.994

(by 1/ŜE) 0.05 0.122 0.244 0.423 0.614 0.775 0.893 0.957 0.986 0.997 0.999
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Table 2 Type-I error and power assuming heterogeneous µ and σ2 values

Method α Type-I error random µ random σ2 random µ, σ2

Total T 0.01 0.010 0.634 0.370 0.248
0.05 0.049 0.812 0.618 0.461

Weighted Z 0.01 0.010 0.634 0.523 0.351
(by
√
n) 0.05 0.049 0.812 0.743 0.568

Weighted Z 0.01 0.010 0.634 0.584 0.394

(by 1/ŜE) 0.05 0.049 0.812 0.784 0.600
Weighted Z 0.01 0.010 0.719 0.584 0.443

(by µ/ŜE) 0.05 0.049 0.872 0.784 0.656
Lancaster’s 0.01 0.010 0.637 0.525 0.356

0.05 0.049 0.814 0.745 0.571
Weighted χ2 0.01 0.010 0.627 0.504 0.357

(by
√
n) 0.05 0.049 0.810 0.722 0.563

Weighted χ2 0.01 0.010 0.629 0.546 0.385

(by 1/ŜE) 0.05 0.049 0.811 0.755 0.591
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Figure 1 Tukey’s plots of P -values for Lancaster’s and the
√
ni–weighted Z-test vs. the

total T test. Top row: µ = 0. Bottom row: µ = 0.05.


