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Abstract

Identification and description of genetic variation underlying disease susceptibility, efficacy

and adverse reactions to drugs remains a difficult problem. One of the important steps in

the analysis of variation in a candidate region is the characterization of linkage

disequilibrium (LD). In a region of genetic association, the extent of LD varies between the

case and the control groups. Separate plots of pairwise standardized measures of LD (e.g.

D′), for cases and controls are often presented for a candidate region to graphically convey

case-control differences in LD. However, the observed graphical differences lack statistical

support. Therefore we suggest the “LD contrast” test to compare whole matrices of

disequilibrium between two samples. A common technique of assessing LD when the

haplotype phase is unobserved is the EM algorithm with the likelihood incorporating the

assumption of Hardy-Weinberg equilibrium (HWE). This approach presents a potential

problem in that in the region of genetic association the HWE assumption may not hold

when samples are selected on the basis of phenotypes. Here we present a computationally

feasible approach that does not assume HWE, along with graphical displays and a

statistical comparison of pairwise matrices of LD between case and control samples. LD

contrast tests provide a useful addition to existing tools of finding and characterizing

genetic associations. Although haplotype association tests are expected to provide superior

power when susceptibilities are primarily determined by haplotypes, the LD contrast tests

demonstrate substantially higher power under certain haplotype-driven disease models.
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Introduction

There has been considerable progress in designing techniques that go beyond sequential

testing of single nucleotide polymorphisms (SNPs). These methods are particularly

important for the analysis of multiple SNPs that jointly represent variation within common

transcripts and other functional regions such as promoters. Methods for detection of

association between traits and interacting genetic polymorphisms are being rapidly

developed. Many approaches have considered important situations where haplotypes of

consecutive markers can be defined and tested for association with the trait. Methods have

been designed to incorporate various sampling designs as well as the haplotype phase

uncertainty1,2,3,4,5,6,7. It has been noted that the extent of LD can be different between the

case and the control groups in a region of genetic association, and the case-control LD

comparison can aid the analysis in a region of putative association8. Contrasting pairwise

LD matrices between cases and controls via graphical display provides a direct visual

comparison9. However, the observed graphical difference is subject to sampling variation

and lacks statistical support. Therefore, a statistical test is desirable. In the context of

association mapping, Nielsen et al. presented a direct LD comparison approach involving

two diallelic loci and noted that in certain situations a test that directly compares LD

extent between the case and the control groups can be a powerful alternative to either

haplotype-based or single-marker approaches10. A test comparing the LD extent will

include only a single LD parameter that results in a single degree of freedom test, whereas
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a haplotype test will include four haplotypes with three degrees of freedom. Nielsen et al.

considered the case of unambiguous haplotype phase. When the haplotype phase is

unknown, the EM algorithm is used to infer frequencies of haplotypes and ultimately to

assess LD. The likelihood is constructed by assuming HWE on the level of haplotypes.

With two diallelic markers there are four haplotypes, and the usual assumption is that the

two-locus haplotypes are in HWE. Checking that each SNP is in HWE is not sufficient to

ensure HWE at the haplotypic level. Furthermore, in the region of association, the HWE is

generally expected to be distorted in case and control samples11,12. Therefore, the EM

computation, while being a valuable tool for evaluating LD in a sample of population

controls, is not strictly appropriate for comparing LD levels in samples of cases and

controls, or samples otherwise selected on the basis of phenotype.

Recently, Schaid13 and Zaykin14 showed that LD estimation using the composite

disequilibrium approach, discussed below, provides similar results to the EM-based method

under HWE, is computationally simpler, and avoids the assumption of haplotypic HWE.

Hamilton and Cole15 and Zaykin14 gave bounds and proposed normalization for LD based

on the composite definition. Zaykin showed that this normalization is robust to departures

from HWE. Therefore, we propose using the composite coefficient and its normalization for

characterizing the LD in case-control samples. This leads to efficient methods of comparing

and testing the difference of pairwise LD matrices between the case and control samples.

We show that certain disease models result in high power of the LD contrast test in

comparison with the haplotypic test even under situations when susceptibilities are largely
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determined by haplotypes. In such situations the LD contrast test outperforms both the

haplotype-based test as well as multilocus tests based on comparison of SNP scores.
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Methods

A test for comparing two single linkage disequilibrium (LD) coefficients (“LD contrast”

test) was described by Nielsen et al. for the case of known phase, i.e. when four haplotype

classes are directly observed10. A chi-square test statistic has the form

X2 =

(
D̂cases

AB − D̂controls
AB

)2

Var
(
D̂cases

AB

)
+ Var

(
D̂controls

AB

) (1)

with the variances given in Weir16, p. 113. The LD coefficient, DAB, is equal to

PAB − pApB, PAB is the frequency of haplotype carrying alleles A, B, and pA, pB are the

corresponding allele frequencies. A log-linear framework for comparing disequilibria

coefficients at one and two loci has been provided by Huttley and Wilson17. There is only a

single LD parameter describing dependence among the four haplotypes and the

corresponding allele frequencies. Therefore, this LD contrast test has an advantage in

being a single degree of freedom test, whereas a haplotypic test with all four haplotypes

has three degrees of freedom. Nielsen et al. found, empirically, that this test can have

higher power than either a haplotypic or a single-marker test when the pairwise LD

between a functional site and two tested markers is low. When the haplotype phase is

unknown, the above test can be extended to compare two composite LD coefficients using a

test analogous to (1) with the variances provided by Weir16. Furthermore, comparison of

standardized coefficients may be of interest when single locus genotypic frequencies differ.

One of the commonly used standardized measures of LD is the coefficient D′
AB suggested

by Lewontin18, D′
AB = DAB/ max DAB, where max DAB is the maximum possible absolute
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value of DAB given allele frequencies, also described in a non-genetic context by Yule19,

max DAB =


min [pApB, (1− pA)(1− pB)] ; if DAB < 0

min [(1− pA)pB, pA(1− pB)] ; if DAB > 0.

(2)

Weir20 discussed the correlation between alleles A, B given by

RAB = DAB/
√

pA(1− pA)pB(1− pB), which has the range that depends on allele

frequencies. Weir20 and Peduzzi et al.21 gave the bounds for rAB. While allele counts are

directly observed, haplotype phase is often ambiguous, therefore PAB cannot be estimated

as a proportion of AB haplotypes among all 2n haplotypes in a sample. The maximum

likelihood estimate P̂AB, and correspondingly, D̂AB and D̂′
AB can be obtained. However,

this approach usually requires the assumption of HWE, that is the dilocus genotype

frequencies are given by the products of frequencies of haplotypes. Weir and Cockerham22

suggested estimating the composite LD coefficient instead, defined as

∆AB = PAB + PA/B − 2pApB, with the composite correlation

rAB =
∆AB√

(pA(1− pA) + DA)(pB(1− pB) + DB)
(3)

where DA, DB are the the Hardy-Weinberg disequilibrium coefficients at two loci, and PA/B

is the joint frequency of alleles A and B at two different gametes. This coefficient is directly

estimated from dilocus counts16, and under HWE corresponds to DAB. Weir20 and Schaid13

investigated statistical properties of the composite LD estimator and made comparisons of

the composite (∆̂AB) and the maximum likelihood (D̂AB) estimators. The composite

estimator appears to perform well, being robust with respect to the HWE assumption.
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The maximum and minimum possible values for ∆AB given genotypic frequencies at

two loci were reported by Hamilton and Cole15 and Zaykin14. These values correspond to

bounds on covariance between two trinary variables that take values −1, 0, 1. Equation (4)

in Zaykin14 gives the bounds for abs(∆AB). succinctly as

max ∆AB = d−s
2

+ 1
2
(1− 2pA)(1− 2pB)

where d = min(PAA, Pbb) + min(Paa, PBB)

 , ∆AB < 0

max ∆AB = d−s
2
− 1

2
(1− 2pA)(1− 2pB)

where d = min(PAA, PBB) + min(Paa, Pbb)

 , ∆AB > 0

and s = 1− d−min(1− d, PAa + PBb) (4)

The standardized composite measure of LD with the range -1 to 1 is computed as

∆′
AB =

∆AB

max ∆AB

. (5)

The standardization using (4) takes into account composite LD dependency on genotype

frequencies and holds the promise for association mapping applications. Cases and controls

will generally have different extent of gametic as well as non-gametic disequilibria around a

region of genetic association10,14, which is captured by the composite LD.

Such a test is extended here to the comparison of whole matrices of standardized

coefficients between the case and the control groups to aid in identification of effects due to

interactions among SNPs. The matrix of non-standardized ∆̂ coefficients is non-negative

definite by virtue of being a variance-covariance matrix. Therefore one can compute
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statistics based on eigenvalue-eigenvector (spectral) decomposition of the LD matrix.

Previously, we proposed the use of spectral decomposition of the composite LD matrix for

selection of a subset of markers that optimize the information retained in a genomic region,

using samples of population controls23. The matrix of standardized composite LD is not

necessarily positive definite, limiting the application of the spectral decomposition-based

statistic. Another statistic used in this study is based on the overall LD difference (Z2).

We define the standardized composite LD matrices as ∆′
Y and ∆′

N and matrices of the

composite LD correlation (3) for the case and the control groups as rY and rN . In both

cases, diagonal entries of the matrices are equal to one. Composite LD matrices have

spectral decompositions

r̂Y =
L∑

i=1

λi|Y ei|Y eT
i|Y (6)

r̂N =
L∑

i=1

λi|N ei|N eT
i|N (7)

where
{
λi|N , ei|N

}
are sample composite LD eigenvalues and eigenvectors (for the control,

N , or for the case, Y , group), and T denotes the transpose. Spectral decompositions based

on the composite LD covariance matrices, ∆Y ,∆N , are defined similarly.

We define matrices of first k column case and control eigenvectors by EY and EN ,

correspondingly. The two statistics are

Z1 = trace
[
ET

Y ENET
NEY

]
(8)

Z2 = trace
[
(r̂Y − r̂N)T (r̂Y − r̂N)

]
(9)

We suggest that the Z2 statistic should take a slightly different form when computed using



10

the standardized LD:

Z2 =
trace

[
(∆′

Y −∆′
N)T (∆′

Y −∆′
N)

]
4L(L− 1)

(10)

In these equations, L is the number of markers, and k ≤ L is the number of principal

components. The denominator, 4L(L− 1), is the upper bound for the numerator of Z2.

The denominator does not affect the magnitude of the resulting p-value because it is

invariant under permutations.

The statistic Z1 measures the difference between two spaces (sum of squared cosines of

the angles between the eigenvectors) defined by the first k eigenvectors and ranges between

k and 0 (maximum difference). Krzanowski described this statistic and the corresponding

permutation-based tests (where the phenotype value is randomly shuffled among

individuals) for comparison of two sets of principal components24,25. The value k must be

specified in advance. Krzanowski25 suggested using the value of k that is the largest integer

smaller than L/2. This ensures that the “important” components are represented, while

values k ≥ L/2 will cause the subspaces defined by the two sets of eigenvectors to intersect

in at least one dimension.

The sum of squared differences statistic Z2 measures the overall difference in the

corresponding pairwise LD. This statistic is also appropriate for comparing ∆′
Y and ∆′

N .

Note that for the standardized LD, the range of Z2 is (0 ≤ Z2 ≤ 1) with 1 giving the

maximum difference.

Both Z1 and Z2 definitions can be covariance based, rather than correlation based.
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However, results for the covariance based tests are not reported here because these tests

showed consistently inferior power when compared to the correlation based tests. We also

performed a preliminary examination of several statistics based specifically on the

comparison of corresponding LD eigenvectors, as well as eigenvalues (e.g. sum of squared

differences) between the case and the control groups. These tests did not show prominent

power characteristics and the results are not reported here. Nevertheless, detailed study of

utility of such tests may warrant further investigation.

The generalized T 2 test was applied in the association mapping context by Xiong et

al.26 This test employs the composite LD matrix as part of the test statistic. The T 2 test

compares mean vectors of SNP values in cases and controls where SNP values are obtained

by recoding genotypes as AA→ 1, Aa→ 0, aa→ −1. The variance part of the T 2 test

statistic is the pooled variance-covariance matrix for the recoded values. It follows that

under the hypothesis of no association the off-diagonal elements of this matrix are

estimates of twice the composite LD coefficients, and the diagonal entries are twice the

estimates of the variances of allele frequencies. Therefore, the generalized T 2 test indirectly

utilizes the composite LD in the variance part of the statistic.
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Results

To evaluate performance of the proposed tests, we compared methods that are designed to

detect either single-SNP effects, or SNP interactions when the effects are associated with

entire haplotypes. The T 2 test is expected to have good power in the presence of several

SNPs contributing to the association. In contrast, the minP test27 is most sensitive to a

single associated SNP while accounting for correlation between SNPs due to LD. This test

evaluates significance of the most extreme association test statistic (Armitage’s trend test

in the present study). The significance is evaluated via permutations, preserving

dependencies among SNPs. To detect haplotypic effects we employed the “Haplotype

Trend Regression” method (HTR) of Zaykin et al.2 Methods used for power comparisons in

this study are merely providing a reference point of comparison under different models. It

is unlikely that a single “best” method can be recommended for the discovery of genetic

associations because the power obtained for the different methods will vary with the

disease models assumed.

Pharmacogenetic association mapping example – CYP2D6

Identification of individual genetic differences in response to medicine has potential for

reducing side effects and improving efficacy of drugs. The cytochrome p450 gene, CYP2D6,

is involved in metabolism of about 20% of marketed drugs28. Hosking et al.29 described the

association of single nucleotide and haplotype polymorphisms with the poor drug
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metabolizer phenotype in a region around the CYP2D6 gene. The data set consisted of 41

“poor metabolizer” cases and 977 controls. SNPs from the middle of the region show very

high levels of association that would be strongly supported by any of the tests discussed

here. To illustrate an application of our technique, we identified six 5’-flanking consecutive

SNPs. Missing genotypes were imputed with the package MICE30. Further details of the

data set are given in Hosking et al.

We found pronounced differences in LD between the case and the control groups.

Figure 1 presents the differences in LD graphically, by displaying the LD matrices using

ellipses whose shape reflects the magnitude of LD and the direction reflects the sign of the

disequilibrium: 45◦-oriented ellipses reflect the positive sign of LD, while round shape of an

ellipse reflects a low degree of LD. Murdoch and Chow31 suggested the usage of such

graphs to display correlation matrices. Evidently, there are large observed differences, as

some of the coefficients are reversed in sign. The values of r (the left graph) and ∆′ (the

right graph) are similar to each other.

The difference in correlation is significant at the 5% level: the p-value for the Z2(r) test

is equal to 0.033, although the Z2(∆
′) test p-value of 0.061 does not reach significance (all

tests except the asymptotic T 2 are based on 50,000 permutations). The test comparing the

first two correlation-based principal components, Z1(k = 2), gave a significant p-value,

0.026. Statistics based on k = 1, 3 resulted in p-values equal to 0.232 and 0.283,

correspondingly. There is a multiple testing issue involved with trying out statistics based

on the different numbers of principal components, k = 1, 2, 3. Nevertheless, we note that
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the value k = 2 corresponds to Krzanowski’s recommendation, and could be set as the

default value. The T 2 test gave the p-value equal to 0.337, reflecting the apparent absence

of detectable effects associated with individual SNPs. Neither the allelic trend test, nor the

test comparing genotypic frequencies at individual SNP were significant. The overall

haplotypic test was not significant (p=0.168). Thus, the application of the LD contrast test

to this particular data set shows that the method is successful in detecting the case-control

LD difference, supporting visual differences in the LD patterns conveyed by Figure 1.

Simulation I: 5-SNP and 6-SNP haplotypes

A more extensive evaluation of the tests based on the Z1 and Z2 statistics was performed

using simulations. When susceptibilities are mainly driven by haplotypes (i.e. there are

pronounced haplotype effects but no interaction between haplotypes), it is expected that

haplotypic tests should have optimal power. Nevertheless, there are notable exceptions

from this rule. For two markers, Nielsen et al.10 showed that there are scenarios when a

test comparing LD coefficients is more powerful than a single-locus or a haplotypic test.

One situation when this is the case is when multilocus susceptibilities induce an

“orthogonal”-like distribution of dilocus haplotypes between the case and the control

groups. By “orthogonal” we mean the situation when high-susceptibility haplotypes tend to

be defined by different SNPs. Culverhouse et al.32 considered epistatic models of this type.

To mimic this scenario, a set of simulations has been constructed under a

haplotype-driven model, common for all simulations. Haplotype frequencies were drawn
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from the Dirichlet(1,...,1) distribution. Effect sizes were drawn from the Gamma(1)

distribution and inspected to ensure that two large effect sizes (hi) are allocated to the

most distinct 6-SNP haplotypes, 111111 and 222222, corresponding to a situation of two

independent mutations in high LD with two very distinct haplotypes. To form an

individual, a pair of haplotypes in these simulations was sampled from the population with

the Dirichlet-derived haplotype frequencies. To obtain the binary outcome, the continuous

phenotype values (Yijk = hi + hj + ek), where ek ∼ N(0, σ2), σ = 7.5, were dichotomized

around two different threshold values, determined by the 0.05 and 0.5 population quantiles

of Y . The population values of ∆′ among the cases and among the controls are listed in

Table 1. The correlation LD values followed the same pattern and were similar in values to

the values of ∆′. The largest difference between the corresponding r and ∆′ coefficients was

found to be 0.06. The population LD values were small, which may correspond to a

situation when a set of SNPs in a candidate gene is selected on the basis of redundancy

reduction23. The largest case-control LD difference (0.116) was between the (1,4) and (4,1)

entries of the LD matrix, the minimum difference was 0.009, and the mean difference was

0.07. For this set of simulations, 250 cases and 250 controls were sampled for each of 10000

simulation runs.

Tests based on Z1 and Z2 statistics (using both ∆′ and r-based versions of Z2) were

performed and p-values recorded. Results of these simulations for the two values of

population prevalence are shown in Table 2. The results show that the LD-contrast test

based on the squared difference statistic (Z2) has the largest power using both the ∆′ and
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the correlation based definitions.

The power of the haplotype-based test2 was substantially lower, and the power of both

T 2 and minP (single-SNP permutation-based trend allelic test) was low. The power of the

principal components based test (Z1) was lower then the power of the test based on the Z2

statistic. However, in this model it was higher than the power of the T 2, minP , and the

haplotypic tests (at the value of k < L/2 = 2). Dichotomization around the population

mean to produce the binary outcome yielded similar results to the quantile-defined

thresholds just described (data not shown). In addition to these results with fixed

parameters, we conducted a set of 5-SNP simulations where samples of haplotypes were

obtained using the forward evolutionary model of drift with recombination33. The

simulations are “forward” to distinguish them from a popular coalescent approximation to

this process, that operates “backwards” in time. These forward simulations are a typical

implementation of a genetic drift with admixture population-genetic model, with

non-overlapping generations and recombination modeled as a Poisson process. A very

similar model was used in Zaykin et al.2 The effects that determine susceptibilities were

sampled from a template that induces pairwise orthogonality, with added normal

variability. In contrast to the simulation just described, all population parameters were

sampled anew prior to each simulation. This allowed averaging across a variety of models.

The power is not necessarily expected to be reduced in this setup. In general, larger

variance associated with haplotype effects would result in higher power values of the tests.

In addition, the induced “marginal effects” at the level of SNPs and dilocus haplotypes are
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dependent on both, the susceptibility values as well as on the population frequencies.

In these simulations, we observed that the 5× 5 composite LD matrix comparison tests

(Z2) still had higher power on average (88% power for the correlation and 75% for ∆′) than

either the generalized T 2 (55 % power) or the haplotype-specific test (60% power). Thus,

these simulations confirmed that the power of the LD contrast tests is still the highest, as

was found to be the case for the fixed set of effects and frequencies.

Simulation II: 15 and 30-SNP haplotypes

An evaluation of the tests when the trait variation is determined by the diploid pairs of

haplotypes (diplotypes) was performed using simulations. For this model we used much

larger, 15-SNP and 30-SNP haplotypes sampled from a population generated by the

forward evolutionary model of drift with recombination33. The phenotype model was

similar to the one described above. We considered a more general, diplotype-driven model,

where normally distributed diplotype rather than haplotype effects were added to the trait

value together with the common normal error. New diplotype effects were sampled prior to

each simulation. In this set of simulations the trait values have been dichotomized around

the mean to produce a binary trait. The LD contrast tests were verified to have the correct

type-I error by setting the population genetic effects to zero and examining quantiles of the

resulting p-value distribution.

This set of simulations generated relatively high pairwise LD. The two middle quartiles

for the population LD distribution (measured by rAB) were estimated to be 0.413 and
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0.975 with the median value 0.735. One of the 30-SNP samples from this simulation study

was used to produce an illustrative graphical plot of pairwise LD (Figure 2). The plot

illustrates LD differences between the upper (cases) and the lower (controls) samples. For

example, there is a region of high LD around the marker pair (21,8) in the cases, while this

region has relatively low LD in the controls. Nonetheless, statistical tests, as described

here, are needed to assess the extent to which these LD differences can be attributed to the

sampling variation.

As before, we assumed haplotypic phase to be unknown. Many published haplotype

association mapping algorithms would not be computationally feasible given the large

number of SNPs. The generalized T 2 test26 has been used for the comparison as well as the

single SNP based “minP” shuffling test, where the significance of the allelic trend test with

the maximum value of chi-square is obtained via permutations27,34. It should be noted that

the T 2 test has high power when alleles of multiple SNPs independently contribute to the

trait, because the test compares means of SNP scores between the case and the control

groups. In both 15-SNP and 30-SNP settings we observed similar power for the T 2 and Z2

tests.

For the 15-SNP data, the power was 0.71 for T 2 and Z2, when Z2 was based on the

correlation LD matrix (Table 3). The power for the Z2 test based on the standardized

matrix was lower, 0.62. The single-SNP permutation-based trend (allelic) test had power

0.57. Thus, despite taking into account the correlation between SNPs, single-marker tests

had relatively lower power. We computed the eigenvector statistic Z1 for values of k
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required to account for various proportions of the variance (0.5, 0.75, 0.9) as can be

determined by the cumulative sum of eigenvalues (such an approach has been previously

employed in Meng et al.23 The maximum value of k was set to 7. This resulted in k equal

to 1-3 (k̄ = 1.27) for 0.5 of the variance, k equal to 1-6 (k̄ = 3.97) for 0.75 of the variance,

and k equal to 6-7 (k̄ = 6.99) for 0.9 of the variance. Fixed values of k have been tried as

well, however we could not achieve power comparable to that of the test based on Z2. Due

to higher LD in this set of simulations, the best power was observed at intermediate values

of k.

Similar relative power was observed for the 30 SNP data. When Z2 was based on the

correlation LD matrix, the power was 0.82 for T 2 test, 0.85 for the Z2 test, and 0.77 for the

Z2 test based on the standardized LD (∆′). The eigenvector statistic based test (Z1) had

highest power of 0.62 at the proportion of the variance equal to 0.75, that corresponded to

k = 2-8, (k̄ = 5.71). The single-SNP permutation-based trend test had very low power,

0.17.

Although the LD matrix comparison test was found to have power similar to the

generalized T 2, our results suggest that these tests tend to identify essentially different

attributes of genetic association in a region. The left graph of Figure 3 shows a plot of

p-values obtained from the T 2 test versus the corresponding p-values of Z2 (15 SNPs

simulation). The correlation between the two tests was quite low (0.36) and over a half of

T 2 test p-values greater than 0.05 were smaller than 0.05 when evaluated with Z2. On the

other hand, the right graph for the correspondence between Z1 and Z2 statistics shows very
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large correlation (0.91). The test Z1 for the difference between the case and the control

group principal components had lower power than the test based on Z2, shifting points up

from the diagonal on the second graph.
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Discussion

Genetic association studies typically report characterization of LD in candidate regions

with LD plots, i.e. using graphical representation of LD matrices9. These plots are usually

given for population control samples, although LD plots for case samples are reported as

well and compared (visually) with the LD pattern in control samples. Rubio et al.35

compared graphical plots of LD between multiple sclerosis case and control samples in the

HLA region concluding that D′ values appeared slightly higher in the case sample. Suarez

et al.36 compared specifically composite LD coefficients between samples of alcoholics and

non-alcoholics, concluding that there was similarity in the pattern of LD, ”although there

is the suggestion of less disequilibria in the alcoholic sample than among the controls”. We

suggest that such comparisons should be complemented by a statistical procedure.

Moreover, we found that the power of comparing LD patterns is comparable to that of

traditional mapping techniques, or even superior in certain situations.

The standardized LD coefficient, D′ remains a popular measure that accounts for

dependence of the LD range on allele frequencies. However, one of the problems with a

EM-based estimator is the requirement of the random union of haplotypes (haplotypic

HWE). We resolve this problem by accommodating results of Hamilton and Cole15 and

Zaykin14, and suggest that the plots can be based on the standardized composite

coefficient. Straightforward definitions of the composite and standardized composite LD as

well as efficiency of the computations make it easy to compare LD plots between samples of
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cases and controls. Such comparisons can be done “by eye”, but a statistical procedure is

desirable. An asymptotic test to compare two LD (i.e. covariance) matrices can be

constructed, however such tests are rather sensitive to distributional assumptions37,38. In

addition, the distribution theory and inference become much more complicated once

normalizations of covariance (e.g. correlation) are considered25. Because of these concerns,

we adopted the permutational framework to provide comparison of LD matrices based on

the composite coefficient and its standardized version.

Statistical approaches specifically tailored to identification of haplotype effects are

being rapidly developed39. There is strong biological evidence that the entire haplotypes

rather than single SNPs are important in determining the trait variation. Therefore

identification and estimation of haplotype effects is an important issue. Still, the

multiplicity of haplotypes and phase uncertainty adversely affect statistical power.

Multilocus “scoring” approaches that capitalize on marginal effects of individual SNPs are

being developed as well. These approaches indirectly take into account the interaction

between SNPs while adjusting for LD26,40. In particular, these approaches are expected to

have good power under models inducing substantial marginal SNP effects and strong LD.

Although haplotype-based approaches and scoring methods such as the generalized T 2 test

provide relatively high power in the respective situations, it has been noted that the extent

of LD can be markedly different between the case and the control groups in a region of

genetic association8. Therefore, a case-control LD comparison appears to be a promising

addition to existing methods of characterizing multilocus associations. Further, Nielsen et
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al.10 examined a two-SNP situation and found that a test comparing LD coefficients can be

more powerful than a single-locus or a haplotypic test.

We extend these results to the case of multiple SNPs. The LD contrast test, like any

other method, would not be expected to have superior power across all susceptibility

models. One virtue of the LD contrast test is the reduced number of parameters (e.g. there

is only a single LD coefficient in two-SNP case, although there are four haplotypes), and as

we discuss here, there are certain models that may result in good power of the LD contrast

test. A prominent example is when multilocus susceptibilities induce “orthogonal”-like

distribution of dilocus haplotypes in cases and controls. Heterogeneity models where

mutations are associated with haplotypes that are distinct with respect to a large

proportion of the alleles that they carry, may result in such orthogonality for some of the

dilocus pairs. To illustrate why the LD contrast test can work well under these scenarios,

denote two alleles at either of two loci by 1 and 2: A ≡ 1, B ≡ 1, a ≡ 2, b ≡ 2. The

disequilibrium coefficient can be written in terms of the haplotype frequencies as

DAB ≡ D11 = P11P22 − P12P21. The disequilibrium is large in a particular sample if the

haplotypes “11”, “22” are over-represented compared to the two other types. Therefore the

ratio Dcases
AB /Dcontrols

AB tends to be away from one when the “orthogonal” haplotypes “11”

and “22” are over-represented in one of the groups. A similar situation holds with the

composite LD definition, because the value of the sum DAB + DA/B increases with DAB.

Moreover, we found that while the T 2 test and the LD contrast test provide similar power

under a general diplotype-driven model, the correlation between p-values of the two tests is
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low (the left graph of Figure 3), suggesting that these approaches distinguish between

different aspects of association. That is, the LD comparison tests are more sensitive to

interactions that tend to induce small marginal effects associated with individual SNPs.

The magnitude of marginal effects is largely unpredictable in practice as it is determined

by both multilocus susceptibility values and the corresponding population frequencies.

Therefore, it would vary from population to population given the same penetrance

configuration.

The question remains, which measure, ∆′ or the correlation r is more appropriate for

the comparison of patterns of LD. Two samples can have equal LD correlation values,

while the standardized LD coefficients are unequal, and vice versa41, making the a priori

choice of the statistic somewhat difficult. An appealing feature of the standardization by

the LD bounds (“di-prime-ization”) in that it makes the measure independent of single

locus frequencies. The independence is in the sense of the range that the coefficient can

take. The allele frequencies very much remain a part of that definition42,43, and it would be

a mistake to interpret the standardized coefficient as being free of dependencies on the

allele or genotype frequencies. On the other hand, the correlation coefficient enjoys a

well-defined statistical and population-genetic properties and gives a straightforward

extension to the principal components based inference. The simulations (II) show

somewhat higher power of the tests based on the correlation, and the CYP2D6 data set

considered here provides an example where the test based on the correlation provides a

slightly stronger evidence of association (p = 0.033 vs. p = 0.061), although both results
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can be considered indicative of association. In the absence of a specific hypothesis it seems

reasonable to employ the correlation-based analysis, and reserve the ∆′-based LD

comparisons for more detailed characterizations of LD. Nevertheless, the correlation and

the the ∆′-based comparisons address different hypotheses, and both tests have their value.

Our choice of a particular simulation design might have favored greater deviations from the

equality of correlations. The orthogonal model (“Simulation I”) in which the correlation

and the ∆′ values were almost identical, showed similar power of two tests.

In our simulations we found that the squared difference-based statistic has better

power than the statistic based on the comparison of the principal components, although

the correlation between p-values obtained for these tests is high. The squared difference is

a more omnibus test. For example, if the amount of LD is proportionally higher among the

cases for all pairs of markers, the principal components test will lack power. In addition,

there is uncertainty in the number of components to use. Still, such tests can provide a

description of the multivariate structure of LD. The principal component based analysis

seems to be most valuable at the descriptive stage once the association is established. The

default value for the number of principal components (k) can be set to Krzanowski’s

recommendation25 to use the largest integer k smaller than L/2.

In summary, we suggest that statistical approaches to compare pairwise LD matrices

between the case and the control samples are useful additions to already available statistical

mapping tools. As with single marker case-control analysis, population heterogeneity is an

issue. Further research should emphasize extending these methods to accommodate family
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data and provide methods robust to population stratification and admixture.
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Table 1. Population case-control ∆̂′
AB matrix for the 6-SNP haplotype heterogeneity model

(Simulation I)

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6
SNP1 0.127 0.192 0.193 0.128 -0.181
SNP2 0.055 0.185 0.104 0.236 -0.048
SNP3 0.143 0.089 0.185 -0.138 0.268
SNP4 0.077 0.005 0.133 0.193 0.055
SNP5 0.042 0.187 -0.208 0.085 -0.085
SNP6 -0.229 -0.108 0.160 0.045 -0.118

Upper part of the matrix: ∆̂′
AB among the cases.

Lower part of the matrix: ∆̂′
AB among the controls.
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Table 2. Power values for the 6-SNP haplotype heterogeneity model (Simulation I)

Prevalence Haplotype Test T 2 Z1 (k=1) Z1 (k=2) Z2 (corr) Z2 (∆′) minP
0.05 0.388 0.081 0.365 0.417 0.663 0.654 0.073
0.50 0.251 0.081 0.196 0.301 0.454 0.443 0.073

k = 1 for Z1 test corresponds to about 15% of variation accounted by principal components.

k = 2 for Z1 test corresponds to about 25% of variation accounted by principal components.

minP : single-SNP permutation-based trend (allelic) test.
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Table 3. Power values for the diplotype-driven model with 15 and 30 SNPs (Simulation II)

SNPs T 2 Z1 (50% var) Z1 (75% var) Z1 (90% var) Z2 (corr) Z2 (∆′) minP
15 0.707 0.478 0.423 0.407 0.711 0.617 0.569
30 0.818 0.563 0.621 0.488 0.847 0.773 0.171

minP : single-SNP permutation-based trend (allelic) test.
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Figure legends

Figure 1: LD ellipse plots for the CYP2D6 data. Left graph: r̂Y vs. r̂N . Right graph: ∆̂′
Y

vs. ∆̂′
N .

Figure 2: Composite LD color plot (sample dataset from Simulation II with 29 SNPs).

Above the diagonal: ∆̂′
Y below the diagonal: ∆̂′

N . ∆′-based LD difference

p-value: < 1× 10−3. Blue to red corresponds to the increase in abs(∆′).

Figure 3: Correspondence between p-values (simulation II with 15 SNPs). Left graph: plot

of T 2 vs. Z2 -log of p-values (low correlation). Right graph: plot of Z1 vs. Z2 -log of

p-values (high correlation).
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Figure 1: (description is on the Figure Legends page)
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Figure 2: (description is on the Figure Legends page)
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Figure 3: (description is on the Figure Legends page)


