
Notation and Jargon

θ: parameter(s)
X : data
p(θ|X): probability of θ given X (i.e., posterior probability density)
p(θ): prior distribution for θ
p(X|θ): likelihood

p(θ|X) =
p(θ,X)

p(X)

=
p(X|θ)p(θ)∫
θ p(X, θ)dθ

=
p(X|θ)p(θ)∫

θ p(X|θ)p(θ)dθ

E(θ|X): expected value of θ given X (i.e., posterior mean)
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Motivation:

Bayesian inference centers on the posterior probability distribution
p(θ|X). For example, Bayesians will typically want to report the
posterior mean E(θ|X) as a point estimate of θ. If parameter(s) θ
is(are) discrete, then the posterior mean is

E(θ|X) =
∑
θ
θp(θ|X). (1)

If parameter(s) θ is(are) continuous, then the posterior mean is

E(θ|X) =
∫
θ θp(θ|X)dθ. (2)

Often, the above sums or the above integrals are not easy to evaluate.
It is often the situation for continuous parameter(s) θ that the
density p(θ|X) can be evaluated for each value of θ even though the
exact solution of the above integral for the posterior mean is not easy
to obtain. In such a situation, it may be of interest to characterize
the posterior distribution p(θ|X) by randomly sampling values of θ
from this posterior density.
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Random Samples

Let θ1, θ2, . . . , θN be N independent samples from the posterior
probability distribution p(θ|X). If N is large, a good estimate of
the posterior mean for θ is the sample mean for θ,

E(θ|X) .=
1

N

N∑
i=1
θi. (3)

A good estimate of the posterior mean for θ2 might be the sample
mean for θ2,

E(θ2|X) .=
1

N

N∑
i=1
θi

2. (4)

In general, a good estimate of the posterior mean for some function
f (θ) of θ might be the sample mean for f (θ),

E(f (θ)|X) .=
1

N

N∑
i=1
f (θi). (5)

Summary: Because Bayesian inference revolves around posterior
dist. p(θ|X) and what can be computed from it, there is much value
to obtaining random sample θ1, θ2, . . . , θN from p(θ|X).
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Rejection Sampling

Sometimes, posterior distribution has simple form and it is easy to
directly sample θ1, θ2, . . . , θN from p(θ|X).

For cases where direct sampling is not easy, rejection sampling might
work. With rejection sampling, we choose a probability distribution
g(θ) for θ that is straightforward to sample from.

We assume that we know or can find some positive number c such
that cg(θ) ≥ p(θ|X) for all values of θ. Notice that one implication
of this requirement is that we cannot have g(θ) = 0 for some value
of θ where p(θ|X) is not zero.
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Rejection sampling algorithm:

For i = 1 to N {
1. Sample θ∗ from g(θ)

2. Set r = p(θ∗|X)
cg(θ∗)

3. With probability r, set θi = θ∗. Otherwise, “reject” θ∗ and go to
Step 1 above }

Note 1: We can carry out Step 3 above by sampling a random
number U from a uniform distribution between 0 and 1. Because
the probability that U < r is equal to r, this means that we set
θi = θ∗ if U < r and we reject θ∗ if U ≥ r.

Note 2: We hope p(θ∗|X) and cg(θ∗) tend to not be too different
from each other. Otherwise, we will often reject θ∗ in Step 3
above. This may make it computationally infeasible to obtain
desired random sample.
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Importance Sampling

To emphasize that posterior mean E(θ|X) is expected value of
θ according to posterior distribution p(θ|X) we use Ep(θ|X)(θ) as
another way to refer to the posterior mean.

In general, expected value of some function f (θ) of θ with respect
to some probability distribution g(θ) will be written Eg(θ)(f (θ)).

If θ is discrete,
Eg(θ)(f (θ)) =

∑
θ
f (θ)g(θ). (6)

If θ is continuous,

Eg(θ)(f (θ)) =
∫
θ f (θ)g(θ)dθ. (7)
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Now, we assume θ1, θ2, . . . , θN is sample from g(θ) rather than
from the posterior density.

Importance sampling is way of adjusting a sample θ1, θ2, . . . , θN
from g(θ) so that it can be used to estimate quantities related
to other probability distributions (e.g., the posterior probability
distribution p(θ|X) ).
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For a parameter θ that is defined on continuous values (the same
ideas would apply if it was a discrete-valued parameter), we can
approximate the posterior mean of some function f (θ) because

E(f (θ)|X) = Ep(θ|X)(f (θ)) =
∫
θ f (θ)p(θ|X)dθ

=
∫
θ f (θ)

g(θ)

g(θ)
p(θ|X)dθ

=
∫
θ f (θ)

p(θ|X)

g(θ)
g(θ)dθ

= Eg(θ)(f (θ)
p(θ|X)

g(θ)
). (8)
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Because θ1, θ2, . . . , θN is a sample from g(θ), we could therefore use
the approximation,

Ep(θ|X)(f (θ)) = Eg(θ)(f (θ)
p(θ|X)

g(θ)
) .=

1

N

N∑
i=1
f (θi)wi, (9)

where wi is referred to as an importance weight and is

wi =
p(θi|X)

g(θi)
. (10)

However, a (usually) better approximation is

Ep(θ|X)(f (θ)) .=
∑N
i=1 f (θi)wi∑N

i=1wi
. (11)

We will not justify this latter approximation, but notice that

Eg(θ)(wi) = 1
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Note 1: An advantage of Equation 11 is that the same
approximation would result if all weights were multiplied by some
number. The implication is that we only need to be able to estimate
the weights up to some constant of proportionality that is shared
among the weights. This is often useful for Bayesian applications
because

p(θ|X) =
p(X|θ)p(θ)

p(X)
. (12)

Numerator of above ratio is likelihood multiplied by prior density.
Denominator is term that is typically difficult to calculate but it
fortunately is not a function of θ. This means the p(X) in the
numerator and denominator terms of Equation 11 can cancel each
other out and we need only to calculate numerator of ratio in
Equation 12.
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Note 2: Approximation of Equation 11 is likely to be good if
importance weights do not vary much and is likely to be bad if
importance weights substantially vary. One implication is that
importance sampling tends to be most successful when g(θ) and
p(θ|X) are quite similar.
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Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods have revolutionized
statistics.

Usually, MCMC methods are applied in Bayesian frameworks.

p(θ|X) =
p(θ,X)

p(X)

=
p(X|θ)p(θ)∫
θ p(X, θ)dθ

=
p(X|θ)p(θ)∫

θ p(X|θ)p(θ)dθ

In many situations, determining the exact value of the integral in
denominator is difficult.
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The MCMC idea is to approximate Pr (θ | X) by sampling a large
number of θ values from Pr (θ | X).

So, θ values with a higher posterior probability are more likely to
be sampled than θ values with a low posterior probability.

Question: How is this sampling achieved?

Answer: A Markov chain is constructed and simulated. The states
of this chain represent values of θ. The stationary distribution of
this chain is Pr (θ | X).

In other words, we start the chain at some initial value of θ. After
running the chain for a long enough time, the probability of the
chain being at some particular state will be approximately equal to
the posterior probability of the state.
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Let θ(t) be the value of θ after t steps of the Markov chain where
θ(0) is the initial value.

Each step of the Markov chain involves randomly proposing a new
value of θ based on the current value of θ. Call the proposed value
θ∗.

We decide with some probability to either accept θ∗ as our new state
or to reject the proposed θ∗ and remain at our current state.

The Hastings (Hastings 1970) algorithm is a way to make this
decision and force the stationary distribution of the chain to be
p(θ|X).

According to the Hastings algorithm, what state should we adopt
at step t+ 1 if θ(t) is the current state and θ∗ is the proposed state?
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Let J(θ∗|θ(t)) be the “jumping” distribution, i.e. the probability of
proposing θ∗ given that the current state is θ(t).

Define r as

r =
p(θ∗|X)J(θ(t)|θ∗)
p(θ(t)|X)J(θ∗|θ(t))

=
p(X|θ∗)p(θ∗)J(θ(t)|θ∗)
p(X|θ(t))p(θ(t))J(θ∗|θ(t))

With probability equal to the minimum of r and 1, we set

θ(t+1) = θ∗.

Otherwise, we set

θ(t+1) = θ(t).
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For the Hastings algorithm to yield the stationary distribution
p(θ|X), there are a few required conditions.

The most important condition is that it must be possible to reach
each state from any other in a finite number of steps.

Also, the Markov chain can’t be periodic.

MCMC implementation details:

The Markov chain should be run as long as possible.

We may have T total samples after running our Markov chain. They
would be θ(1), θ(2), . . ., θ(T ).

78



The first B (1 ≤ B < T ) of these samples are often discarded (i.e.
not used to approximate the posterior).

The period before the chain has gotten these B samples that will
be discarded is referred to as the “burn–in” period.

The reason for discarding these samples is that the early samples
typically are largely dependent on the initial state of the Markov
chain and often the initial state of the chain is (either intentionally or
unintentionally) atypical with respect to the posterior distribution.

The remaining samples θ(B+1), θ(B+2), . . ., θ(T ) are used to
approximate the posterior distribution. For example, the average
among the sampled values for a parameter might be a good estimate
of its posterior mean.
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Question: How do we know that we have run our Markov chain long
enough to get a good approximation of the posterior distribution?

Annoying Answer: We don’t.



Diagnostics (not guaranteed to detect that chain is too
short but often work in practice):

1. Run multiple independent chains from different initial states. See if
these chains give approximately the same approximation of posterior.

2. Look at lots of plots, especially “trace plots” where parameter
value or some statistic is on y-axis and where step number is on x-
axis. Want to see “white noise” pattern in trace plot.

3. Numerical measure such as “Gelman-Rubin diagnostic” (google it)
or “effective sample size” (see next pages).



History plots

“Burn in” is over right about here

Important! This is a plot of first 1000 steps, and there
is no indication that anything is wrong (but we know
for a fact that we didn‛t let this one run long enough)

“White noise” appearance is a good sign
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Slide Courtesy of Dr. Paul Lewis, University of Connecticut



Slow mixing

Chain is spending long periods of time
“stuck” in one place

Indicates step size is too large, and most proposed 
steps would take the robot “off the cliff”

Slide Courtesy of Dr. Paul Lewis, University of Connecticut



The problem of co-linearity

Parameter 

Parameter 

Joint posterior density
for a model having two
highly correlated 
parameters is a narrow 
“ridge”

If we have separate proposals
for  and , even small steps
may be too large!

Slide Courtesy of Dr. Paul Lewis, University of Connecticut
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parameters is a narrow 
“ridge”

If we have separate proposals
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One solution is
to reparameterize:



Imagine θ1, θ2, . . . , θN are independent samples from posterior
probability distribution with mean µ = E[θ|X ] and variance σ2.

Sample mean θ estimates µ . . .

θ =
1

N

N∑
i=1

θi

Var(θ) =
σ2

N



If samples θ1, θ2, . . . , θN are autocorrelated (i.e., are not
independent) samples from posterior distribution, then define Neff
such that

Var(θ) =
σ2

Neff
.

Neff is the “effective sample size” for θ.

Neff =
N

1 + 2 ∑∞
k=1 ρk(θ)

where ρk(θ) is known as autocorrelation of lag k (i.e., correlation
between value and value k steps later).



Problems with MCMC approaches:

1. They are difficult to implement. Implementations may need to
be clever to be computationally tractable.

2. For the kinds of complicated situations that biologists face, it
may be very difficult to know how fast the Markov chain converges
to the desired posterior distribution.

There are diagnostics for evaluating whether a chain has converged
to the posterior distribution but often the diagnostics do not provide
a guarantee of convergence.

Example diagnostics include randomly choosing the initial state of
the Markov chain and then determining whether different MCMC
runs yield about the same estimated posterior distribution.
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Also, people will often look at how the posterior probability (or
something proportional to it such as Pr

(
θ(t)

)
Pr

(
X | θ(t)

)
) changes

as t changes. If the chain has some obvious pattern or trend in
terms of a plot of the posterior probability versus t, then the chain
has not converged.

Problems with Bayesian approachs in general:

1. Disagreements over priors.

2. Heavy Computational Requirements

(problem 2 is rapidly becoming less noteworthy)
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Markov Chain Monte Carlo and Relatives
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The MCMCRobot software by Dr. Paul Lewis is an excellent software program for illustrating
the Metropolis-Hastings algorithm. It is freely available at:

http://phylogeny.uconn.edu/software/
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