
EM Algorithm (Expectation-Maximization Algorithm): Numerical optimization
routine that is often helpful for making maximum likelihood inferences

Best for cases where hard to analytically �nd m.l.e. for observed data but
would be easy if could observe some hidden data

e.g., if could observe paths and emissions for HMM

e.g., if could observe times at which sequences change and actual
         changes that sequences experience at those times

e.g., if could observe genotype rather than phenotype for estimating allele
         frequencies (ABO blood groups)
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(maximum likelihood estimates of allele frequencies are proportions of alleles in samples)



Basic idea of EM algorithm applied to ABO blood groups:

Observed data are numbers each blood type: NA−, NAB, NB−, NOO

Full data would be: NAA, NAB, NAO, NBB, NBO, NOO

Full data log-likelihood proportional to:

(2NAA+NAB+NAO) log pA+(2NBB+NAB+NBO) log pB+(2NOO+NAO+NBO) log pO

Sufficient statistics:

NA = 2NAA+NAB+NAO, NB = 2NBB+NAB+NBO, NO = 2NOO+NAO+NBO

Note: full-data log-likelihood is linear in sufficient statistic values



Full-data parameter max. likelihood estimates would be:

p̂A =
NA

2N

p̂B =
NB

2N

p̂O =
NO

2N

N = NAA + NAB + NAO + NBB + NBO + NOO

2N = NA + NB + NO



Step 1: Start with initial guesses to parameter values pA
(0), pB

(0), pO
(0).

Set h = 0.

Step 2: Calculate expected sufficient statistic values NA, NB, NO

conditional upon pA
(h), pB

(h), pO
(h) and conditional upon observed

data.

In other words, set:

NA
(h) = E[NA|pA(h), pB

(h), pO
(h), NA−, NAB, NB−, NOO]

NB
(h) = E[NB|pA(h), pB

(h), pO
(h), NA−, NAB, NB−, NOO]

NO
(h) = E[NO|pA(h), pB

(h), pO
(h), NA−, NAB, NB−, NOO]



Because each genotype is diploid,

E[NA|pA, pB, pO, NA−, NAB, NB−, NOO] =
2pA

2 + 2pApO
pA2 + 2pApO

NA−+NAB

E[NB|pA, pB, pO, NA−, NAB, NB−, NOO] =
2pB

2 + 2pBpO
pB2 + 2pBpO

NB−+NAB

E[NO|pA, pB, pO, NA−, NAB, NB−, NOO] =

2pApO
pA2 + 2pApO

NA− +
2pBpO

pB2 + 2pBpO
NB− + 2NOO



Step 3: Find max. likelihood estimates if expected values actually
observed

pA
(h+1) =

NA
(h)

2N

pB
(h+1) =

NB
(h)

2N

pO
(h+1) =

NO
(h)

2N

Step 4: Decide whether to terminate EM. If not, set h=h+1 and
go to Step 2.



Probabilistic models of nucleotide substitution (when
sites evolve identically and independently)

Let qij be the instantaneous rate of change at a site from nucleotide
type i to type j

Q will refer to the matrix of instantaneous rates (Q will have 4 rows
and 4 columns because i and j can each by any of 4 nucleotide
types)

For a nucleotide that starts as type i at time 0, the probability that
nucleotide is type j at time t is denoted pij(t).

pij(t) is referred to as a transition probability.

98



Rate Matrix for General Time Reversible Model

F
R To
O
M A C G T

A − µ(aπC + bπG + cπT ) µaπC µbπG µcπT

C µaπA − µ(aπA + dπG + eπT ) µdπG µeπT

G µbπA µdπC − µ(bπA + dπC + fπT ) µfπ T

T µcπA µeπC µfπG − µ(cπA + eπC + fπG )



Consider a very very small amount of evolutionary time ∆t.

When i 6= j,
pij(∆t)

.= qij∆t

Also,
pii(∆t)

.= 1− ∑
j,j 6=i

qij∆t

Equivalently,
pii(∆t)

.= 1 + qii∆t

where
qii =

∑
j,j 6=i
−qij

(in preceding equations, .= can be replaced by = when the limit as
∆t approaches 0 is taken)
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With any rate matrix (including above), the matrix of transition
probabilities P (t) can be determined from the rate matrix Q and
the amount of evolution t via

P (t) = eQt = I +
(Qt)

1!
+

(Qt)2

2!
+

(Qt)3

3!
+ . . . ,

where I is the identity matrix.
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Felsenstein 1981 model assumes sequence positions evolve indepen-
dently and identically.

Let πj be the probability that a residue is type j. πj is often called
the equilibrium probability of residue type j.

pij(∞) = πj

For Jukes-Cantor model, πj = 1/4 for all 4 nucleotide types j.
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Computing pij(t) for the Felsenstein 1981 model

The Felsenstein 1981 model assumes that this is how nucleotide
substitution occurs:

1. For each site in the sequence, an “event” will occur with proba-
bility s per unit evolutionary time.

2. If no event occurs, the residue at the site does not change.

3. If an event occurs, the probability that a residue is type i after
the event is πi.

What is the probability that no event occurs in t units of evolution-
ary time?

(1− s)× (1− s)× (1− s) . . . (1− s) = (1− s)t.
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When s is close to 0,
1− s .= e−s.

So,
Pr (no event) = (1− s)t .= e−st.

When s is redefined as an instantaneous rate per unit evolutionary
time, the approximation becomes an equality:

Pr (no event) = e−st.

Therefore,

Pr (at least one event) = 1− Pr (no event) = 1− e−st.

If there have been no “events”, then the residue cannot possibly
have changed after an amount of evolution t.

If there has been at least one event, then the residue is type j with
probability πj.
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Poisson process: “s” is rate of events, “t” is time duration

Pr(no events in time t) = e

Prob density �rst event at time t =  se      (the exponential distribution)
mean of exponential distribution with parameter s is 1/s

Prob(K events in time t)= e    (st)    (the Poisson distribution)

expected # events in time t = st
variance # events in time t = st

Jargon: If stochastic process has variance of # events in time t exceeding
its mean, it is called overdispersed.  If variance is less than mean, it is
underdispersed.

-st

-st

-st K

K!



Therefore,

pii(t) = Pr (no events) + Pr (at least one event)πi
= e−st + (1− e−st)πi.

For i 6= j,

pij(t) = Pr (at least one event)πj
= (1− e−st)πj.

Notice that s and t appear only as a product. s and t cannot be
separately estimated. Only their product can be estimated.
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The Felsenstein 1981 model and other models of sequence evolution
have a property known as Time Reversibility.

Time reversibility means that πipij(t) = πjpji(t) for all i, j, and t.

Equivalently, πiqij = πjqji for all i and j.

For phylogeny reconstruction, time reversibility means that we can-
not (on the basis of sequence data alone) hope to distinguish which
of two sequence is ancestral and which is the descendant.

The practical implication of time reversibility for phylogeny recon-
struction is that maximum likelihood cannot infer the position of
the root of the tree unless additional information information exists
(e.g., which taxa are the outgroups) or additional assumptions are
made (e.g., a molecular clock).
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 Widely used models of sequence change assume 
“time reversibility”

What is “time reversibility” ? (see also “Detailed Balance”)

Intuition:  “time reversibility” = “evolution has no direction”

Descendant:

Ancestor:

Time Reversibility means that stationary probability of ancestor
multiplied by transition probability are identical for 2 above
scenarios, no matter what nucleotides represented by “i” and “j”

i

j

j

i
GOOD
ASSUMPTION?



Consider a data set consisting of 2 aligned sequences.

Let nij be the number of sites where the first sequence has nucleotide
type i and where the second sequence has nucleotide type j.

Let n represent the entire data set (i.e., nij for all i and j in
{A,C,G, T}).

The Felsenstein 1981 parameters are π = {πA, πC, πG, πT} and st.

The likelihood is Pr (n | π, st) and maximum likelihood estimates
of π and st are obtained by finding the combination of π and st
that maximizes Pr (n | π, st).
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The likelihood is

Pr (n | π, st) =
∏
i

∏
j
(πipij(t))

nij

where i and j are both in {A,C,G, T}.

Likelihoods can be a bit complicated to maximize...
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Consider a site that has nucleotide type i in one sequence and nu-
cleotide type j at the same position in another sequence.

For the Felsenstein 1981 and other time-reversible substitution mod-
els, we can consider i to be the ancestor and j to be the descendant.

Let t be the amount of time separating the ancestral and descendant
state.

The time of the ancestral state i will be 0.

Because transition probabilities for Felsenstein 1981 model have s
and t confounded (i.e., only product of s and t can be estimated),
we will consider t to be 1 and will focus on estimating s.

The time of the descendant state j will then be 1.
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Our “observed” data are i at the beginning of the timespan and j
at the end of the time span.

The “unobserved” data are the character state of our site at all
times greater than 0 and less than 1. These unobserved data are
also sometimes referred to as “latent” data or missing data.

Now, imagine that we actually do know the state of our site at all
times between 0 and 1.

This means that we know exactly how many substitutions occurred
and we know exactly which substitutions occurred and we know
exactly when each substitution occurred.

We will refer to this complete history as a site path and we will
denote this site path by ρ.
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Notation:

Assume ρ specifies exactly K nucleotide substitutions.

We will have t(z) be the time of the zth substitution (1 ≤ z ≤ K).

For convenience, set t(0) = 0 and t(K + 1) = 1.

We will have i(z) be the nucleotide type of the site immediately
after the zth substitution (1 ≤ z ≤ K).

For convenience, set i(0) = i and i(K + 1) = i(K) = j.
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Earlier, we defined qij as the rate of change from i to j. Here, we
maintain that definition with the exception of the meaning of qii.
To account for hidden events in the Felsenstein 1981 model, we will
have qii be sπi.

This means qij = sπj for all i and j.

Define
qi• =

∑
j
qij
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t(k+1)=1    i(k+1)=j

     t(k)           i(k)

        .      .

     t(2)          i(2)

    t(1)          i(1)

 t(0)=0     i(0)=i

   
       

  .      .
  .      .



For w ∈ {A,C,G, T}, let c(w) be the count of times when i(z) = w
for 0 ≤ z ≤ K.

With Felsenstein 1981 model, we have the likelihood

Pr (i, j, ρ | s, π) = πi(
K∏
z=1

sπi(z)e
−s(t(z)−t(z−1)))e−s(t(K+1)−t(K))

= πi(
K∏
z=1

πi(z))s
Ke−s

= π
c(A)
A π

c(C)
C π

c(G)
G π

c(T )
T sKe−s

The log-likelihood is

log Pr (i, j, ρ | s, π) = K log s− s +
∑

w∈{A,C,G,T}
c(w) log πw
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Maximum likelihood estimators are

π̂w =
c(w)

c(A) + c(C) + c(G) + c(T )

and
ŝ = K

.
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If we knew s and π and had only the observed residues i and j,
what would be our estimates of K, c(A), c(C), c(G) and c(T )?
First, note that

E[K|K ≥ 1, s] =
∞∑
z=0

zPr (K = z | K ≥ 1, s)

=
∞∑
z=0

z
Pr (K = z,K ≥ 1 | s)

Pr (K ≥ 1 | s)

=
∞∑
z=1

z
Pr (K = z | s)
Pr (K ≥ 1 | s)

=
1

Pr (K ≥ 1 | s)
∞∑
z=1

zPr (K = z | s)

=
1

1− e−s
∞∑
z=0

zPr (K = z | s) =
E[K|s]
1− e−s

=
s

1− e−s
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Note that

E[K|i, j, π, s] = E[K|K = 0, i, j, π, s]Pr (K = 0 | i, j, π, s) +
E[K|K ≥ 1, i, j, π, s]Pr (K ≥ 1 | i, j, π, s)

= Pr (K ≥ 1 | i, j, π, s)E[K|K ≥ 1, i, j, π, s]



If i = j,

E[K|i, j, π, s] = Pr (K ≥ 1 | i, j, π, s)E[K|K ≥ 1, i, j, π, s]

=
Pr (K ≥ 1, i, j | π, s)

Pr (i, j | π, s)
E[K|K ≥ 1, s]

=
(1− e−s)πj

e−s + (1− e−s)πj
× s

1− e−s

=
sπj

e−s + (1− e−s)πj

If i 6= j,

E[K|i, j, π, s] = Pr (K ≥ 1 | i, j, π, s)E[K|K ≥ 1, i, j, π, s]

= 1× s

1− e−s
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K=0

i=j=w hidden sub of type w

P(K>=1) 
when i=j

i not equal to j

hidden sub of type w P(K>=1) 
when i not equal to j



Earlier, we showed that the log-likelihood is

log Pr (i, j, ρ | s, π) = K log s− s +
∑

w∈{A,C,G,T}
c(w) log πw

The values of K, c(A), c(C), c(G), and c(T ) are termed sufficient
statistics because they capture all of the information from i, j, and
ρ upon which the likelihood depends.

In the usual situation, i and j constitute our “observed data” and
the remainder of ρ represents missing information.
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The idea of the EM-algorithm applied to Felsenstein 1981 model is
to:

1. Start with initial guesses as to the parameters: s(0) and π(0) and
set h = 0

2. Calculate expected values of the sufficient statistics conditional
upon s(h) and π(h). This means calculate

K(h) = E[K|i, j, π(h), s(h)]

and
c(w)(h) = E[c(w)|i, j, π(h), s(h)].
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3. Pretend the expected values of the sufficient statistics were actu-
ally observed and then apply the maximum likelihood formulae for
the observed plus missing data:

π(h+1)
w =

c(w)(h)

c(A)(h) + c(C)(h) + c(G)(h) + c(T )(h)

and
s(h+1) = K(h)

4. Decide whether to terminate EM algorithm. If not, set h=h+1
and go to Step 2.

Note: Above algorithm formulated for silly case where data set
consists of a single site. Real algorithm is straightforward to extend
to case where data set consists of many sites.

Note: Each EM cycle is guaranteed not to lower likelihood.
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Application of the EM algorithm for 10,000 sites from two sequences,
simulated according to Felsenstein 1981 model.

0 1 2 3 4 5 . . . 10 True
s 0.100 0.305 0.397 0.442 0.465 0.477 . . . 0.491 0.500
πA 0.200 0.387 0.397 0.400 0.401 0.402 . . . 0.402 0.400
πC 0.250 0.299 0.299 0.299 0.299 0.299 . . . 0.299 0.300
πG 0.400 0.212 0.205 0.204 0.203 0.203 . . . 0.202 0.200
πT 0.150 0.102 0.099 0.098 0.097 0.097 . . . 0.097 0.100

121



EM algorithm in general (expanded and slightly modified from pages
324-325 of Durbin et al. text) ...

We have observed data x and missing information y and model
parameters θ

Likelihood for observed data x

Pr (x | θ) =
∑
y

Pr (x, y | θ)

Pr (y | x, θ) = Pr (x, y | θ)/Pr (x | θ)

So,
log Pr (y | x, θ) = log Pr (x, y | θ)− log Pr (x | θ)

So,
log Pr (x | θ) = log Pr (x, y | θ)− log Pr (y | x, θ)
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*



Determining Q(θ|θt) is the “E” step of the EM-algorithm. For our
Felsenstein 1981 example, we had

E[log Pr (i, j, ρ | s, π)|i, j, st, πt] =

E[K|i, j, st, πt] log s− s +
∑

w∈{A,C,G,T}
E[c(w)|i, j, st, πt] log πw
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(See 
 on p.123)*




