EM Algorithm (Expectation-Maximization Algorithm): Numerical optimization
routine that is often helpful for making maximum likelihood inferences

Best for cases where hard to analytically find m.l.e. for observed data but
would be easy if could observe some hidden data

e.g., if could observe paths and emissions for HMM

e.g., if could observe times at which sequences change and actual
changes that sequences experience at those times

e.g., if could observe genotype rather than phenotype for estimating allele
frequencies (ABO blood groups)
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When only phenotypes are observed, likelihood is ...
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Difficult to analytically find max. likelihood estimates of allele frequencies
with messy formula above ...
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(maximum likelihood estimates of allele frequencies are proportions of alleles in samples)



Basic idea of EM algorithm applied to ABO blood groups:
Observed data are numbers each blood type: Na_, Nag, Ng_, Noo

Full data would be: Naa, Nag, Nao, Ngg, Ngo, Noo

Full data log-likelihood proportional to:

(2Naa+Nap+Nao)logpa+(2Npp+Nap+Npo) log pp+(2Noo+Nao+Npo) log po

Sufficient statistics:

Ng =2Nga+Nap+Nyo, Ng = 2Npp+Nap+Npo, No = 2Noo+Nao+Npo

Note: full-data log-likelihood is linear in sufficient statistic values



Full-data parameter max. likelihood estimates would be:
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2N = Ny+ Np+ No



Step 1: Start with initial guesses to parameter values p4 Y, pg@. po©).
Set h = 0.

Step 2: Calculate expected sufficient statistic values N, Ng, No
conditional upon p4™ pg™ po" and conditional upon observed
data.

In other words, set:

NA(h) — E[NA‘pA(h)apB(h)va(h)a NA—7 NAB; NB—7 NOO]
NB(h) — E[NB’pA(h)apB(h)7pO(h)7NA—aNABvNB—aNOO]

No™ = E[Nolpa™, p"™, po"™, Na_, Nap, Nz_, Noo|



Because each genotype is diploid,
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Step 3: Find max. likelihood estimates if expected values actually
observed

Step 4: Decide whether to terminate EM. If not, set h=h+1 and
g0 to Step 2.



Probabilistic models of nucleotide substitution (when
sites evolve identically and independently)

Let g;; be the instantaneous rate of change at a site from nucleotide
type ¢ to type j

Q) will refer to the matrix of instantaneous rates (@) will have 4 rows
and 4 columns because ¢ and 7 can each by any of 4 nucleotide

types)

For a nucleotide that starts as type ¢ at time 0, the probability that
nucleotide is type j at time ¢ is denoted p;;(¢).

pi;(t) is referred to as a transition probability.
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Rate Matrix for General Time Reversible Model

A | —ulam. + bm_+ cn) parmc b o
C parm, —u(am +dm +emn ) pdm. per..
G pbr, pudm.  —p(bm, + dm. + fr_)  pfr.

ufrm

c p(an + em. + fnG )

per.



Consider a very very small amount of evolutionary time At.

When 7 # 7,
Also,
pu(At) =1— % g;At
kel

Equivalently,
where

Gii = 2 —Qqij

J,JF0

(in preceding equations, = can be replaced by = when the limit as
At approaches 0 is taken)
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With any rate matrix (including above), the matrix of transition
probabilities P(t) can be determined from the rate matrix ) and
the amount of evolution ¢ via

P(t)zth:I+(?f>+<%?2+<Q3?3+...,

where [ is the identity matrix.
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Felsenstein 1981 model assumes sequence positions evolve indepen-
dently and identically:.

Let m; be the probability that a residue is type j. m; is often called
the equilibrium probability of residue type j.

pij(00) = m;

For Jukes-Cantor model, 7m; = 1/4 for all 4 nucleotide types j.
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Computing p;;(t) for the Felsenstein 1981 model

The Felsenstein 1981 model assumes that this i1s how nucleotide
substitution occurs:

1. For each site in the sequence, an “event” will occur with proba-
bility s per unit evolutionary time.

2. If no event occurs, the residue at the site does not change.

3. If an event occurs, the probability that a residue is type 7 after
the event is ;.

What is the probability that no event occurs in ¢ units of evolution-
ary time?

(1—-8)x(1—5s)x(1—=35)...(1—35)=(1—s5)"
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When s is close to 0,

] —s=¢e".

S0,

Pr(no event) = (1 — s) = e,
When s is redefined as an instantaneous rate per unit evolutionary
time, the approximation becomes an equality:

Pr (no event) = e~ .

Therefore,

Pr (at least one event) = 1 — Pr(no event) = 1 — e~ .

If there have been no “events”, then the residue cannot possibly
have changed after an amount of evolution ¢.

If there has been at least one event, then the residue is type 5 with
probability ;.
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Poisson ProcCess: s”is rate of events, “t”is time duration

-St

Pr(no eventsintimet) = e

Prob density first event at time t = se (the exponential distribution)
mean of exponential distribution with parameter sis 1/s

—St
Prob(K events in time t)= ( 2 (the Poisson distribution)

expected # events in time t = st
variance # events in time t = st

Jargon: If stochastic process has variance of # events in time t exceeding
its mean, it is called overdispersed. If variance is less than mean, it is
underdispersed.



Therefore,

pii(t) = Pr(no events) 4+ Pr (at least one event);
=e "+ (1 -

For ¢ # 5,

pij(t) = Pr(at least one event)r;
= (1 —e )7

Notice that s and ¢ appear only as a product. s and ¢ cannot be
separately estimated. Only their product can be estimated.

104



The Felsenstein 1981 model and other models of sequence evolution
have a property known as Time Reversibility.

Time reversibility means that m;p;;(t) = m;pj(t) for all 7, j, and ¢.
Equivalently, m;q;; = m;q;; for all ¢ and j.

For phylogeny reconstruction, time reversibility means that we can-
not (on the basis of sequence data alone) hope to distinguish which
of two sequence is ancestral and which is the descendant.

The practical implication of time reversibility for phylogeny recon-
struction is that maximum likelihood cannot infer the position of
the root of the tree unless additional information information exists
(e.g., which taxa are the outgroups) or additional assumptions are
made (e.g., a molecular clock).
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Widely used models of sequence change assume
“time reversibility”

What is “time reversibility” ? (see also “Detailed Balance”)
Intuition: “time reversibility” ="“evolution has no direction”

Descendant: J i

Ancestor: i J

Time Reversibility means that stationary probability of ancestor
multiplied by transition probability are identical for 2 above
scenarios, no matter what nucleotides represented by “i” and “j”



Consider a data set consisting of 2 aligned sequences.

Let n;; be the number of sites where the first sequence has nucleotide
type ¢ and where the second sequence has nucleotide type j.

Let n represent the entire data set (i.e., m;; for all ¢ and j in

{A,C,G,T}).

The Felsenstein 1981 parameters are m = {m4, 7¢, g, 7r} and st.

The likelihood is Pr(n | m,st) and maximum likelihood estimates
of m and st are obtained by finding the combination of 7 and st
that maximizes Pr (n | m, st).
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The likelihood 1s
Pr(n | m,st) = I(mpi;(t))"
i j

where ¢ and j are both in {A,C, G, T}.

Likelihoods can be a bit complicated to maximize...
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Consider a site that has nucleotide type ¢ in one sequence and nu-
cleotide type 5 at the same position in another sequence.

For the Felsenstein 1981 and other time-reversible substitution mod-
els, we can consider 7 to be the ancestor and j to be the descendant.

Let t be the amount of time separating the ancestral and descendant
state.

The time of the ancestral state 2 will be 0.

Because transition probabilities for Felsenstein 1981 model have s
and t confounded (i.e., only product of s and ¢ can be estimated),
we will consider £ to be 1 and will focus on estimating s.

The time of the descendant state 5 will then be 1.
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Our “observed” data are ¢ at the beginning of the timespan and j
at the end of the time span.

The “unobserved” data are the character state of our site at all
times greater than O and less than 1. These unobserved data are
also sometimes referred to as “latent” data or missing data.

Now, imagine that we actually do know the state of our site at all
times between 0 and 1.

This means that we know exactly how many substitutions occurred
and we know exactly which substitutions occurred and we know
exactly when each substitution occurred.

We will refer to this complete history as a site path and we will
denote this site path by p.
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Notation:

Assume p specifies exactly K nucleotide substitutions.

We will have ¢(z) be the time of the 2! substitution (1 < z < K).
For convenience, set t(0) = 0 and t(K + 1) = 1.

We will have i(z) be the nucleotide type of the site immediately
after the 2" substitution (1 < 2z < K).

For convenience, set ¢(0) = ¢ and i(K + 1) = i(K) = j.
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Earlier, we defined g;; as the rate of change from ¢ to j. Here, we
maintain that definition with the exception of the meaning of g;;.
To account for hidden events in the Felsenstein 1981 model, we will
have ¢g;; be sm;.

This means g;; = s7; for all 7 and j.

Define
Gie = 2_qij
j
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ttk+1)=1] i(k+1)=j

If we had complete information (i.e., information about p as well as
about ¢ at time 0 and j at time 1), our likelihood would be

t(k) ikk Pr(i,5,p| s,m) = Pr(¢|s,mPr(j,p|is,7)=mPr(p]|1,s,n)

= (11 e (- T,
o o z=1 Qi(z—1),0 ?
. . w o di(K),o (HE+1)—t(K))
t2) | i _ Wﬁ_(ﬁf et g i) ot 1))
Note: If we did not allow hidden events and if ¢;, was defined by
summing g;; over all 7 that were not equal to ¢, then the above
equation would apply to any Markov model of sequence change (even
if 2 and j represent sequences rather than sites).
t(1) i(1)
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Forw € {A,C,G, T}, let c(w) be the count of times when i(z) = w
for 0 < z < K.

With Felsenstein 1981 model, we have the likelihood

. . K
Pr (Zajap ‘ 877T> — Wi( 11 ST(z)

6—s(t(z)—t(z—1))>e—$(t(K—|—1)—t(K))
z=1

K —s

K
= 7Tz'< 1;[ 7T2'(z)>5 €

1

= W%A)wgc)ﬁgG)W%(T)sK e’

The log-likelihood is

logPr(i,7,p | s,m) = Klogs — s+ ) c(w) log m,,
we{A,C,G, T}
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Maximum likelihood estimators are

and
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If we knew s and 7 and had only the observed residues 7 and 7,
what would be our estimates of K, ¢(A), ¢(C'), ¢(G) and ¢(T)?
First, note that

E[K|K >1,s] = §OZPr(K:z K >1,5)

g DK =z K>1]s)
T 57 Pr(K>1]s)

x Pr(K=z]|s)
z=1 PI“(K21|S>

1 00
_ Pr (K —
Pr(K21|s)z§1Z r{ Z19)

1 00 EFK
= > zPr(K=z|s)= | ’S]: i

1 — e % 2=0 ] —e s ] —es
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Note that

E[K|i,j,m, s8] = E[K|K =0,i,j,7,s]Pr(K =0 14,7,m,8)+
EIK|IK > 1,i,5,m,s|Pr(K >1|14,j,ms)

= Pr(K>1]1j4,7ms)EK|K>1,i,j,m,s]|



Ifi=j,
E|K|i,j,m,s] = Pr(K>1|14,7,ms)EK|K >1,i,7,m,5]|

Pr(K >1,i,5 | m,s)

— FIKIK >1
Pr(i,j | m,s) KK 21,8
(= )my o S
et (l—e )T 1—e®
ST

e+ (1 —e*)m

Iti 77,
E|Kli,j,m,s| = Pr(K >1]4,5,ms)E|K|K >1i,j,m,5]|

] —e 5
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Let d(a,b) be 1if @ = b and 0 otherwise.

Forw € {A,C,G, T},

Elc(w)|i, j,m,s| = Elc(w)l|i,j,m,s, K =0Pr(K=0]1,j,ms)+
Elc(w)|i, j, 7,8, K > 1|Pr (K > 1| i,7,7,5)
K=0

—5

o , € P(K>=1)
( j) ( )6—5 + (1 — 6_8)773' when 1=)
i=j=W hidden sub of type w (1 B 6_8)71'3‘

(i, ) (D] + (
i notequal toj

+(1=0(2,7))(00, w)(1 = 0(j,w)) + (1 = 0(2, w))o(j, w)

— )

— e ® e+ (1—e)m,

S

+( — 1)my,) X 1

1 — e —
P(K>=1)
wheninotequal toj

hidden sub of type w
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Earlier, we showed that the log-likelihood is
log Pr(i,j,p | s,m) = Klogs— s+ ) c(w) log my,
we{A,C,G, T}

The values of K, ¢(A), ¢(C), ¢(G), and ¢(T) are termed sufficient
statistics because they capture all of the information from 2, 5, and
p upon which the likelihood depends.

In the usual situation, ¢ and 7 constitute our “observed data’ and
the remainder of p represents missing information.
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The idea of the EM-algorithm applied to Felsenstein 1981 model is
to:

1. Start with initial guesses as to the parameters: s and 7% and
set h =0

2. Calculate expected values of the sufficient statistics conditional
upon s and 7). This means calculate

K" = B[Ki, ", )

and
c(w)™ = Elc(w)li, j, 7", s"].
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3. Pretend the expected values of the sufficient statistics were actu-
ally observed and then apply the maximum likelihood formulae for
the observed plus missing data:

(h+1) C(’LU)(h)

’ (A 4 ¢(C)1) + ¢(G) M) 4 ¢(T) M)

and
ght1) _ pr(h)

4. Decide whether to terminate EM algorithm. If not, set h=h+1
and go to Step 2.

Note: Above algorithm formulated for silly case where data set
consists of a single site. Real algorithm is straightforward to extend
to case where data set consists of many sites.

Note: Each EM cycle is guaranteed not to lower likelihood.
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Application of the EM algorithm for 10,000 sites from two sequences,
simulated according to Felsenstein 1981 model.

0 1 2 3 4 5 ... 10 | True
s 10.10010.305{0.39710.44210.4650.477| ... 10.4910.500
w41 0.200]0.3870.39710.4000.4010.402 ... ]0.402]0.400
7o 1 0.25010.29910.29910.29910.29910.299 ... 10.2990.300
71 0.40010.21210.20510.204 1 0.20310.203 | ... 10.2020.200
w1 0.15010.102]0.099 | 0.098 | 0.097 | 0.097| ... 10.0970.100
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EM algorithm in general (expanded and slightly modified from pages
324-325 of Durbin et al. text) ...

We have observed data x and missing information y and model
parameters 6

Likelihood for observed data x
Pr(z | 0)=>Pr(z,y|0)
Pr(y | z,0)="Pr(z,y | 0)/Pr(z]|0)
S0,
logPr(y | z,0) =logPr(x,y | ) —logPr(z | 0)
SO

)

logPr(x | 0) =logPr(z,y | 0) —logPr(y | x,0)
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Let 6" represent one set of parameter values (with the hope that
the sequence 0%, 6%, ..., 0", ' represents a series of parameter sets
that produce increasingly higher likelihoods Pr (z | 0)).

We multiply both sides of previous equation by Pr(y | z,6") and
then sum over y to get

SPr(y |z 0)logPr(z|0) =
y
SPr(y |z 0)logPr(z,y|0) — XPr(y| x 0)logPr(y| z0)
Y Y
% logPr(z|6)=>Pr(y | z,0logPr(z,y | ) — S Pr(y| z,0)]logPr(y| x,0)
Y Y
We rename the first expression on the right

Q016" = X Pr(y | 2,0")log Pr (x,y | 6) = Ellog Pr (x,y | 0)[x, 0
Y

123



Determining Q(0]6") is the “E” step of the EM-algorithm. For our
Felsenstein 1981 example, we had

EllogPr (i, j,p | s,7)|i, j, s 7'] =

ElK|i,j,s" ,7'|logs —s+ >  Elc(w)li,j, s, 7']logm,
] we{A,C,G, T}
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Because
logPr(z | 0") = SPr(y| x,0)logPr(x,y | 6)—XPr(y| z,0)logPr(y| x,0
Y Y
= Q(0'¢") — X Pr(y | =,0")logPr(y | 2,0,
m

we have

(y | 0
(y | z,0)

P
log Pr(z | )—logPr(z | 8) = Q(0|6")—Q(0'|0")+>XPr(y | =,0") log Pr
y r

A fancy name for the part on the right side after Q(0]6")—Q(6"|6") is
the Kullback-Leibler divergence of Pr (y | x,0) from Pr (y | x, 6").

This divergence must be > 0 (proof not shown). This means
log Pr(x | 6) — logPr (x | 07) > Q(010") — Q(6']0)

Therefore, the left side of above equation is not negative if the right
side is not negative. We can be sure the right side is not negative by

choosing the value #"! that is the maximum over all 6 of Q(6|6").
This is the “M” step of the EM-algorithm.
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