
HMM miscellanea:

By choosing the appropriate HMM architecture, Markov chains with
orders greater than 1 can be incorporated into the HMM framework.

Example:

We have been assuming that GC-rich and AT-rich states are
organized along a sequence according to a first order Markov chain.

In this case, the value of yi+1 (0 if AT-rich at site i + 1 and 1 if
GC-rich at site i + 1) depended only on the value of yi.

In other words, Pr (yi+1 | y1, y2, . . . , yi) = Pr (yi+1 | yi).

Now let’s assume that we have a second order Markov chain. In this
case, the value of yi+1 depends on the values of yi and yi−1.
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Assume:

Pr (yi+1 = 0 | yi = 0, yi−1 = 0) = 0.9

Pr (yi+1 = 0 | yi = 0, yi−1 = 1) = 0.8

Pr (yi+1 = 0 | yi = 1, yi−1 = 0) = 0.7

Pr (yi+1 = 0 | yi = 1, yi−1 = 1) = 0.2

Define a new type of state wi where wi = 2yi + yi−1. We can define
a first order Markov chain in terms of wi the probabilities of wi+1

given the value of wi are:
wi+1

0 1 2 3
wi
0 0.9 0.0 0.1 0.0
1 0.8 0.0 0.2 0.0
2 0.0 0.7 0.0 0.3
3 0.0 0.2 0.0 0.8
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Back to 1st order chain for GC-rich and AT-rich states . . .

Assume Pr (yi+1 = 1 | yi = 1) = p.

So, Pr (yi+1 = 0 | yi = 1) = 1− p.

Probability that a GC-island has length L is: pL−1(1− p).
This is a geometric distribution.

We can modify the HMM so that GC-islands must be at least some
minimum length M.

As an example, let’s change how the value of yi is determined.
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We will still have yi = 0 when site i is an AT-rich state.

Now, we will have yi = k when site i is a GC-rich state and where
site yi−k is the nearest AT-rich site to site i in the 5’ direction along
the sequence.

For 1 ≤ k < M , we can set

Pr (yi+1 = k + 1 | yi = k) = 1

For k ≥ M , we will have two probabilities that may be non-
zero when yi = k. These possibly nonzero probabilities are
Pr (yi+1 = k + 1 | yi = k) and Pr (yi+1 = 0 | yi = k).

Also, Pr (yi+1 = 1 | yi = 0) and Pr (yi+1 = 0 | yi = 0) may be
nonzero.
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Other more complicated length probability distributions are also
possible by modifying the HMM architecture (e.g., Nick Goldman,
David Jones, and I have exploited this possibility to mimic length
distributions of α-helices, β-strands, turns, and coils in our studies
of protein evolution).
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Sometimes, it is worthwhile to add an explicit “BEGIN” and “END”
hidden Markov state to a model.

The treatment of these “BEGIN” and “END” states is
straightforward.

HMM parameter estimation when the path y is known:

Emission probabilities can be estimated by the number of times a
residue type was emitted divided by the number of times the residue
type could have been emitted.

Transition probabilities can be estimated by the number of times a
transition was taken divided by the number of times that it could
have been taken.
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HMM parameter estimation with the path y is
unknown:

Parameter estimation gets more complicated. There are many
kinds of numerical optimization routines that can be adopted in
conjunction with HMM’s but these will not be discussed here.

The one type of routine that we briefly mention is the Baum-
Welch algorithm, a variant of the expectation-maximization (EM)
algorithm.

If we do not observe the hidden states of an HMM, we can still make
inferences regarding them.

Step 1: Make rough guess about HMM parameter values to initialize
Baum-Welch algorithm

Step 2: Calculate log-likelihood.
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Step 3: Given the parameter values, calculate expected number
of times a residue type was emitted by a specific (e.g., GC-rich)
hidden Markov state. Calculate expected number of times residue
type could have been emitted by that specific hidden Markov state.
Divide former by latter for new estimates of emission probabilities.

For example, expected number of times that an “A” could have been
emitted by a GC-rich state is:

N∑
i=1

Pr (yi = 1 | x)

Calculate expected number of times a transition was taken.
Calculate expected number of times a transition could have been
taken. Divide former by latter to obtain new estimates of transition
probabilities.

Step 4: Go to Step 2 but stop after step 2 if log-likelihood only
changes by a tiny amount from previous cycle.
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Correction: Page 66 in my version of the Durbin et al. text
(page 65 in other versions) reads “... it can be argued that when
the primary use of the HMM is to produce decodings via Viterbi
alignments, then it is good to train using them.” The text is
misleading here – such an argument would be flawed
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