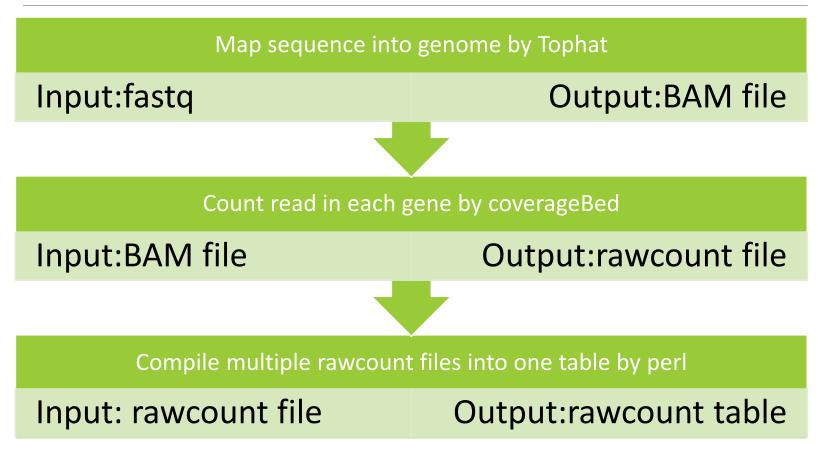
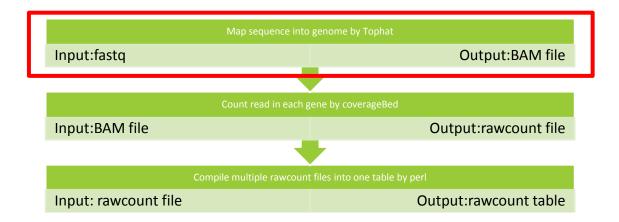
RNAseq workshop

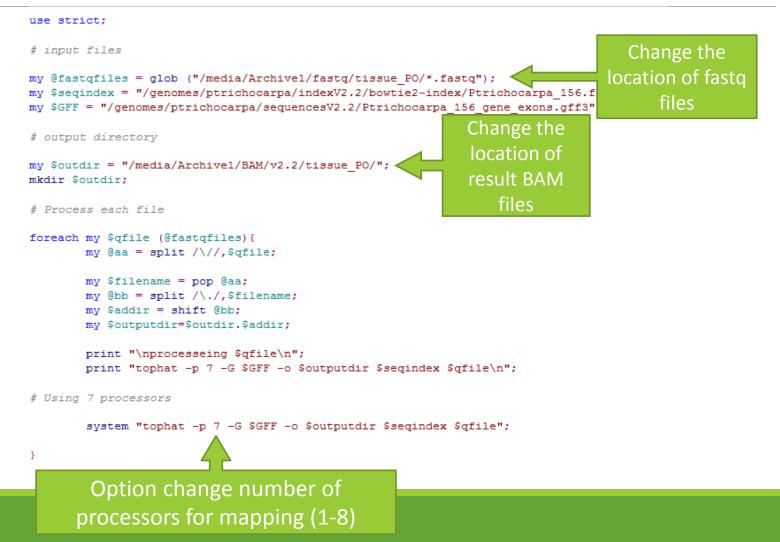

SERMSAWAT TUNLAYA-ANUKIT

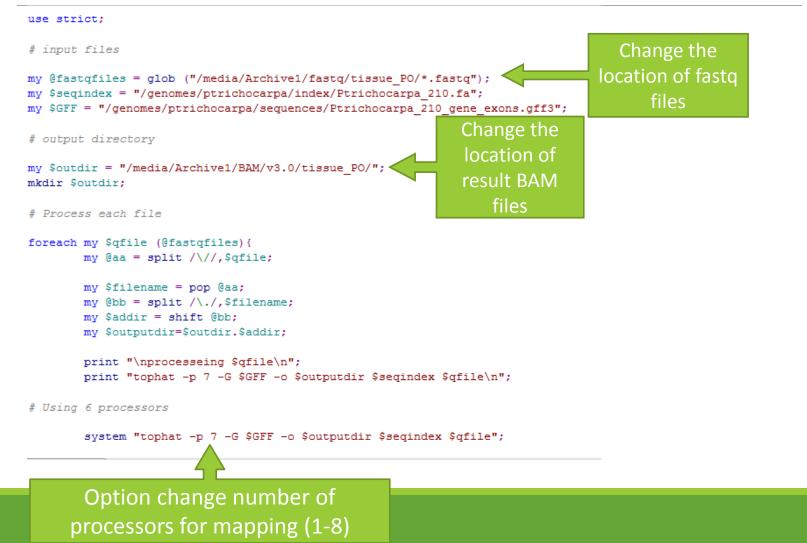

MARCH 26,2014

Outline

- -Introduction : workflow of mapping RNAseq
- -Step 1 Map sequence into genome by Tophat
- -Step 2 count read in each gene by coverageBed
- -Step 3 compile the multiple rawcount files into one table by perl
- -Step 4 identify differential expressed genes by edgeR
- -Question and answer

Workflow of mapping RNASeq




Step1

MAP SEQUENCE INTO GENOME BY TOPHAT


Edit file : tophat2.pl (for Poplar version2)

Edit file : tophat3.pl (for Poplar version3)

Execute using terminal in Ubuntu Linux

Execute using terminal in Ubuntu Linux

stunlay@Blunderbuss: /media/Archive1/fastq/tissue_PO

File Edit View Search Terminal Help
stunlay@Blunderbuss:~\$ cd /media/Archive1/fastq/tissue_PO/
stunlay@Blunderbuss:/media/Archive1/fastq/tissue_PO\$ nohup perl tophat2.pl

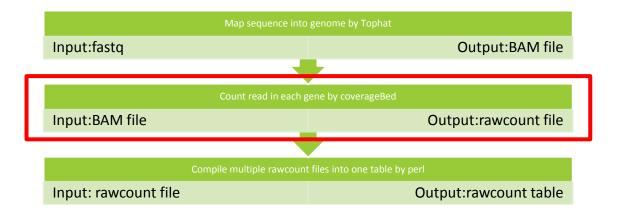
go to directory of file tophat2.pl

cd /media/Archive1/fastq/tissue_PO/

#nohup used to store the screen output into nohup.out
#perl used to execute the perl program for run file tophat.pl

nohup perl tophat2.pl

Example of log file in step 1

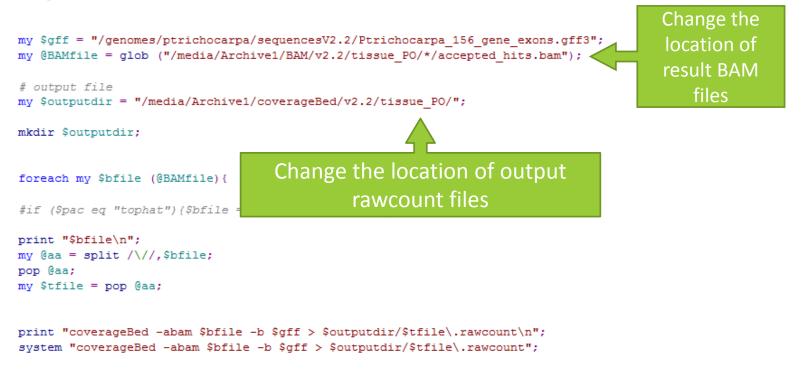

processeing /media/Archive1/fastg/tissue PO/GSL225 01-VC PtX1 NCSU CGATGT L001 R1 001.fastg tophat -p 7 -G /genomes/ptrichocarpa/sequencesV2.2/Ptrichocarpa 156 gene exons.gff3 -o /media/Archive1/BAM/v2.2/tissue PO/GSL225 01-VC PtX1 NCSU CGATGT L001 R1 001 /genomes/ptrichocarpa/indexV2.2/bowtie2-index/Ptrichocarpa 156.fa /media/Archive1/fastq/tissue PO/GSL225 01-VC PtX1 NCSU CGATGT L001 R1 001.fastq [2014-03-21 17:02:23] Beginning TopHat run (v2.0.3) [2014-03-21 17:02:23] Checking for Bowtie Bowtie version: 2.0.0.6 [2014-03-21 17:02:23] Checking for Samtools Samtools version: 0.1.18.0 [2014-03-21 17:02:24] Checking for Bowtie index files [2014-03-21 17:02:24] Checking for reference FASTA file Warning: Could not find FASTA file /genomes/ptrichocarpa/indexV2.2/bowtie2-index/Ptrichocarpa 156.fa.fa [2014-03-21 17:02:24] Reconstituting reference FASTA file from Bowtie index Executing: /usr/local/bin/bowtie2-inspect /genomes/ptrichocarpa/indexV2.2/bowtie2-index/Ptrichocarpa 156.fa > /media/Archive1/BAM/v2.2/tissue PO/GSL225 01-VC PtX1 NCSU CGATGT L001 R1 001/tmp/Ptrichocarpa 156.fa.fa [2014-03-21 17:02:47] Generating SAM header for /genomes/ptrichocarpa/indexV2.2/bowtie2-index/Ptrichocarpa 156.fa format: fastg phred33 (default) quality scale: [2014-03-21 17:02:49] Reading known junctions from GTF file [2014-03-21 17:02:52] Preparing reads left reads: min. length=100, max. length=100, 20010819 kept reads (255 discarded) [2014-03-21 17:10:26] Creating transcriptome data files.. [2014-03-21 17:10:33] Building Bowtie index from Ptrichocarpa 156 gene exons.fa [2014-03-21 17:14:05] Mapping left kept reads to transcriptome Ptrichocarpa 156 gene exons with Bowtie2 [2014-03-21 17:27:34] Converting left kept reads.m2g to genomic coordinates (map2gtf) [2014-03-21 17:36:21] Resuming TopHat pipeline with unmapped reads [2014-03-21 17:36:57] Mapping left kept reads.m2g um to genome Ptrichocarpa 156.fa with Bowtie2 [2014-03-21 17:44:18] Mapping left kept reads.m2g um seg1 to genome Ptrichocarpa 156.fa with Bowtie2 (1/4) [2014-03-21 17:46:39] Mapping left kept reads.m2g um seg2 to genome Ptrichocarpa 156.fa with Bowtie2 (2/4) [2014-03-21 17:49:04] Mapping left kept reads.m2g um seg3 to genome Ptrichocarpa 156.fa with Bowtie2 (3/4) [2014-03-21 17:51:29] Mapping left_kept_reads.m2g_um_seg4 to genome Ptrichocarpa_156.fa with Bowtie2 (4/4) [2014-03-21 17:53:39] Searching for junctions via segment mapping [2014-03-21 17:55:55] Retrieving sequences for splices [2014-03-21 17:56:18] Indexing splices [2014-03-21 17:57:26] Mapping left kept reads.m2g um seg1 to genome segment juncs with Bowtie2 (1/4) [2014-03-21 17:58:24] Mapping left kept reads.m2g um seg2 to genome segment juncs with Bowtie2 (2/4) [2014-03-21 17:59:23] Mapping left kept reads.m2g um seg3 to genome segment juncs with Bowtie2 (3/4) [2014-03-21 18:00:24] Mapping left kept reads.m2g um seg4 to genome segment juncs with Bowtie2 (4/4) [2014-03-21 18:01:19] Joining segment hits [2014-03-21 18:17:52] Reporting output tracks

[2014-03-21 18:29:24] Run complete: 01:27:01 elapsed

What is the result (BAM) file look like?

```
// media/Archive1/BAM/v2.2/tissue_PO/GSL226_11-VC_k19_NCSU_GTCCGC_L002_R1_001/accepted_hits.bam - u
🔚 🛃 🖹 🐇 🗈 🗙 🗷 🎾 🖱 🏙 🎇 🖄 🖷 Encoding 🆓 🥝
         ÿ- BC₁ 0} ËŠ6AR†u9^"- •∢yœ•Š
:"└nE<€ ∄¨÷ Y O¶Åÿ́|%êEtŐ₩⊥+¦ü&!ßøĔ¿øÛ?þ³?ýã?úó¿þ«ßüÅï~[þìùÍïÿî·ÿü‡?üx¿üûıþ‹
244æÒß?
¦'¶pÆHû¤wi∫®·=
                cÑĐ£-:ê[i¿ùõš½ŐCÔ|☆¿i-↑C^J†|Q|Ýx•aOq‰DP%Ú1ÎXúH¨Am!&B}¢£†G-÷
10+ , Eq 3A31×0J@ E =v4ª +=ú+
è'¥) ôÜ>=-èy″ë,•=ogb_¥ ↓s7|ô\ÍÄJA
                                       -0Ï>l0l»z9 ù}0{-f wü¦÷EEúD ²Đ¤ €¼...
¶ -f 7nô•:J(ætËÁACÝM9†x/·iߥ KYaߥâum_*€àòì³ôŸ
   ¶.€àGõ•p~
²i@ðfëi∔üèi∣J?®"cDYM}_ϳ·|u(€àb[09 x#vû |J+¬,•çö¥_+œ0
<•fs>:
8wŹ~ œÛ—:ë¯≫® Ášâ;9 õpà∖
ûÊĂ'}5³¾Nð≪- Î-Ý>⊧P¶Y Uź"Ý1µÞ⊤%†X(àÜUM80∥5°fsûzì" œ»£!{Ú †¦Þö¬²G·í⊧sûtaħêm
ô§KûầÜ>uËš⊦q𿢒í+⊧–‰Štk™GEÅ,ß2Ù⊦t%Íúf Ì"̨ª⊄ÙY÷f
óhhè-
@n<sub>⊤</sub> SŸŒØÞ"-ª)• ÷ÑUxÓ=*
¼Šé⊤ôÜ,l.• w‡=• o;^y"OŐK |üî1&\X,üæ×<lī «Ú-+‡:*ò«qðq ⊤Š-⊦Çià9ÈÅ©qÆs]'"! v|{(
ül≪-;T· ëA»¾·:SÂÁÇŸ®,7Ø4áÑP·Ý#ÀZÝö°,
D⊦ð∖
↑ÆÙXZ³E↑ÇÇÖf+D oÓ>âè,…Ö,¦- 〖j9ÿ8Ȱëæ⊦h¾©åžû¾yx{⊄"zî+^Æ Ý½>ŸŠ└≫·PŸ^%j9"8¨≫X¥;
ùo²BŐü*;; ‰8 ¼§Úfe⊫O¬u,¾½>ž
                               ÁZ⊤´ÄAÝ=Őː@ÝÝUX" áb Ô=»¥eâ îžú±AÝ©;KÃË+¦<+»
éCÁëÓ ·€ f×»ßöàõwÓ∔ x=, B
ðz¨i.xà V ¼bI^ú
iÅÁë]á] -~.•+ ò° ?Æ∣œ¦0
֔kx3€ëE÷Žyý
· + ,~
xu ÞwèlBŠUúÉ≬\ïE⊥¢\תeœd÷⊤êÓ ,_,|=[äÆ VI□°|èú<X¾ Å©`ù ú>GC :F°üf⊤ţ-÷ ,ÿX
î4F=H;m⊥É#%@¿ÙÚÎ
ô
|¤%Xþ± "|Ρ a¿¤ ú†®î⊧ôûcñC₁ô<aŒʲèk:,ofD…ç5×L{ €þcùõʲè?¶Ő%@¿ØV− ýÇ,¾$K^,M"å₁-½
`ùn'o ,ßÜû ẫû°W Ë7}Ïfåg±ĺXVöPŐí úmZn*oîÝâô¬hHÝq∣IT}ÚŐfðëyê₊⊤,ŤĆ}¶©çɽ iY¢$
```

View in IGV


Step2

CONVERT BAM FILE TO RAWCOUNT FILE

File : get_raw_v2.pl

use strict;

input files

File : get_raw_v3.pl

use strict;

input files

```
Change the
my $gff = "/genomes/ptrichocarpa/sequences/Ptrichocarpa 210 gene exons.gff3";
                                                                                       location of
my @BAMfile = glob ("/media/Archive1/BAM/v3.0/tissue PO/*/accepted hits.bam");
                                                                                       result BAM
# output file
                                                                                           files
my $outputdir = "/media/Archive1/coverageBed/v3.0/tissue PO/";
mkdir $outputdir;
                                      Change the location of output
foreach my $bfile (@BAMfile) {
                                                rawcount files
#if ($pac eq "tophat") {$bfile = $bfile . "/accepted hits.bam"}
print "$bfile\n";
my @aa = split /\//,$bfile;
pop @aa;
my $tfile = pop @aa;
print "coverageBed -abam $bfile -b $gff > $outputdir/$tfile\.rawcount\n";
system "coverageBed -abam $bfile -b $gff > $outputdir/$tfile\.rawcount";
```

Execute using terminal in Ubuntu Linux

Stunlay@Blunderbuss: /media/Archive1/fastq/tissue_PO
File Edit View Search Terminal Help
stunlay@Blunderbuss:~\$ cd /media/Archive1/fastq/tissue_PO/
stunlay@Blunderbuss:/media/Archive1/fastq/tissue_PO\$ nohup perl get_raw_v2.pl

#nohup used to store the screen output into nohup.out

#perl used to execute the perl program for run file get_raw_v2.pl

nohup perl get_raw_v2.pl

Example of log file

/media/Archive1/BAM/v2.2/tissue_PO/GSL225_01-VC_PtX1_NCSU_CGATGT_L001_R1_001/accepted_hits.bam

coverageBed -abam /media/Archive1/BAM/v2.2/tissue_PO/GSL225_01-VC_PtX1_NCSU_CGATGT_L001_R1_001/accepted_hits.bam -b /genomes/ptrichocarpa/sequencesV2.2/Ptrichocarpa_156_gene_exons.gff3 > /media/Archive1/coverageBed/v2.2/tissue_PO//GSL225_01-VC_PtX1_NCSU_CGATGT_L001_R1_001.rawcount

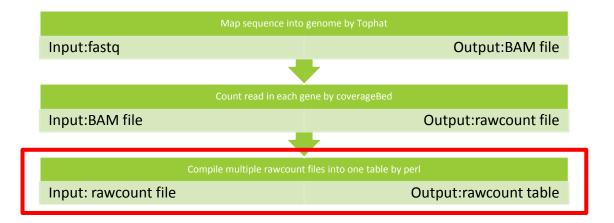
/media/Archive1/BAM/v2.2/tissue_PO/GSL225_02-VC_PtX2_NCSU_TGACCA_L001_R1_001/accepted_hits.bam

coverageBed -abam /media/Archive1/BAM/v2.2/tissue_PO/GSL225_02-VC_PtX2_NCSU_TGACCA_L001_R1_001/accepted_hits.bam -b /genomes/ptrichocarpa/sequencesV2.2/Ptrichocarpa_156_gene_exons.gff3 > /media/Archive1/coverageBed/v2.2/tissue_PO//GSL225_02-VC_PtX2_NCSU_TGACCA_L001_R1_001.rawcount

How coverageBed work?

coverageBed computes both the depth and breadth of coverage of features in **file A** across the features in **file B**

Usage: \$ coverageBed [OPTIONS] -a <BED> -b <BED>


In ours case we specify **BAM file as A** and **GFF file as B**, so we will count depth of each feature in GFF file

Chromosome			
BED File B			
BED File A			
Result	[N=3, 10/15]	[N=1, 2/16]	[N=1,6/6] [N=5, 11/12]

Output file : *.rawcount

А	В	С	D	E F	GΗ	Ι	J	К	L	М
scaffold_1	phytozome8_0	gene	8387424	8394306.	+.	ID=POPTR_0001s10780;Name=POPTR_0001s10780	267	6661	6883	0.9677466
scaffold_1	phytozome8_0	mRNA	8387424	8394306.	+.	ID=PAC:18234938;Name=POPTR_0001s10780.1;pacid	267	6661	6883	0.9677466
scaffold_1	phytozome8_0	gene	4189325	4195866 .		ID=POPTR_0001s05460;Name=POPTR_0001s05460	11	3665	6542	0.5602262
scaffold_1	phytozome8_0	mRNA	4189325	4195866 .		ID=PAC:18237393;Name=POPTR_0001s05460.1;pacid	11	3665	6542	0.5602262
scaffold_1	phytozome8_0	gene	14676188	14680501.		ID=POPTR_0001s17800;Name=POPTR_0001s17800	128	1985	4314	0.4601298
scaffold_1	phytozome8_0	mRNA	14676188	14680501.		ID=PAC:18234264;Name=POPTR_0001s17800.1;pacid	128	1985	4314	0.4601298
scaffold_1	phytozome8_0	gene	20970609	20973083.		ID=POPTR_0001s22350;Name=POPTR_0001s22350	183	2272	2475	0.9179798

- J = number of read count in feature (raw count)
- K = The number of bases coverage from BAM file in features of GFF file
- L = The length of the feature in B.
- M = K/L

Step 3

COMPILE THE MULTIPLE RAWCOUNT FILES INTO ONE TABLE BY PERL

File : compile_mRNA_v2.pl

```
my @expressionfile = glob ("/media/Archive1/coverageBed/v2.2/tissue PO/*.rawcount");
foreach my $exfiles (@expressionfile) {
                            my @bb = split /\//, $exfiles;
                                                                                                                                                                       Change the location of rawcount files
                            my $tline = pop @bb;
                            $tline =~ s/\.rawcount//g;
                            $samples{$tline}=1;
                            print "$exfiles\t$tline\n";
# open each input .rawcount file
                            open IN, "$exfiles" | | die;
                            while (<IN>) {
                                                          chomp;
                                                          my $line = $ ;
                                                          my @aa = split /\t/, $line;
                                                          mv @cc = split /;/,$aa[8];
                                                          my $gene = $cc[1];
                                                          $gene=~s/Name=//g;
                                                          if ($aa[2] eq "mRNA") {
                                                                                        $H{$gene $tline}=$aa[9];
                                                                                        #print 4 print 4 
                                             Option change to gene or
                                             exon for different analysis
3
# output file
open out, ">/media/Archive2/rawcount/mRNA_v2_tissue_PO.rawtable"||die;
```

Change the location and name of output rawcount table files

File : compile_mRNA_v3.pl

```
my @expressionfile = glob ("/media/Archive1/coverageBed/v3.0/tissue PO/*.rawcount");
foreach my $exfiles (@expressionfile) {
       my @bb = split /\//,$exfiles;
                                         Change the location of rawcount files
       my $tline = pop @bb;
       $tline =~ s/\.rawcount//g;
       $samples{$tline}=1;
       print "$exfiles\t$tline\n";
# open each input .rawcount file
       open IN, "$exfiles" | | die;
       while (<IN>) {
              chomp;
              my $line = $ ;
              my @aa = split /\t/,$line;
              my @cc = split /;/,$aa[8];
              my Sgene = Scc[1];
              $gene=~s/Name=//g;
              if ($aa[2] eq "mRNA") {
                     $H{$gene tline}=$aa[9];
                      #print free\t$tline\t$aa[9]\n"
           Option change to gene or
           exon for different analysis
# output file
open out, ">/media/Archive2/rawcount/mRNA v3 tissueP0.rawtable"||die;
        Change the location and name of output rawcount table files
```

Execute using terminal in Ubuntu Linux

800	stunlay@Blunderbuss: /media/Archive1/fastq/tissue_PO
File Edit	View Search Terminal Help
	Blunderbuss:~\$ cd /media/Archive1/fastq/tissue_PO/ Blunderbuss:/media/Archive1/fastq/tissue_PO\$ nohup perl compile_mRNA_v2.pl

#nohup used to store the screen output into nohup.out

#perl used to execute the perl program for run file compile_mRNA_v2.pl

```
nohup perl compile_mRNA_v2.pl
```

Output file : *.rawtable

gene	GSL226_09-VC_k8_NCSU_AGTTCC_L002_R1_001	GSL226_10-VC_k9_NCSU_ATGTCA_L002_R1_001	GSL226_11-VC_k19_NCSU_GTCCGC_L002_R1_001
POPTR_0001s10780.1	347	391	267
POPTR_0001s10790.1	137	118	84
POPTR_0001s10800.1	155	186	164
POPTR_0001s10810.1	18	27	9
POPTR_0001s10810.2	18	27	9
POPTR_0001s10810.3	18	27	9
POPTR 0001s10810.4	18	27	9

Step4

IDENTIFY DIFFERENTIAL EXPRESSED GENES BY EDGER

File : edgeR_Pop_tissue_BGI_workshop.R


```
> setwd("~/RNASeq_workshop")
> #command to install package edgeR
> source("http://bioconductor.org/biocLite.R")
Bioconductor version 2.12 (BiocInstaller 1.10.3), ?biocLite for help
> biocLite("edgeR")
trying URL 'http://bioconductor.org/packages/2.12/bioc/bin/windows/contrib/3.0/BiocInstaller_1.10.4.zip'
Content type 'application/zip' length 50486 bytes (49 Kb)
opened URL
downloaded 49 Kb
The downloaded binary packages are in
C:\Users\stunlay\AppData\Local\Temp\RtmpcFGpOr\downloaded_packages
Bioconductor version 2.12 (BiocInstaller 1.10.4), ?biocLite for help
A newer version of Bioconductor is available for this version of R. ?BiocUpgrade for help
'BiocInstaller' updated to version 1.10.4
BioC_mirror: http://bioconductor.org
Using Bioconductor version 2.12 (BiocInstaller 1.10.4), R version 3.0.2.
Installing package(s) 'edgeR'
Warning: package 'edgeR' is in use and will not be installed
Old packages: 'arm', 'BiasedUrn', 'bit', 'caTools', 'colorspace', 'devtools', 'digest', 'doParallel', 'dynamicTreeCut'.
  'e1071', 'edgeR', 'evaluate', 'ff', 'GGally', 'ggbio', 'gplots', 'gstat', 'gtools', 'Hmisc', 'httr', 'hydroGOF',
  'hydroTSM', 'igraph', 'iplots', 'lavaan', 'limaa', 'lme4', 'lsmeans', 'mapproj', 'minqa', 'mixOmics', 'mnormt',
'multcomp', 'mvtnorm', 'nls2', 'pastecs', 'plotrix', 'plyr', 'png', 'Rcpp', 'RcppArmadillo', 'RcppEigen', 'rgl', 'RGtk2',
'rJava', 'segmented', 'seriation', 'sp', 'VariantAnnotation', 'WGCNA', 'xtable', 'zoo'
Update all/some/none? [a/s/n]:
n
Warning message:
installed directory not writable, cannot update packages 'boot', 'cluster', 'foreign', 'KernSmooth', 'lattice', 'MASS',
  'Matrix', 'mgcv', 'nlme', 'rpart', 'survival'
> library(edgeR)
> #import file "BGI_tissue.txt" (rawcount table) into dataframe "y"
> #header= T => table has header
> #sep="\t" => specify as tab delimited or sepeerate column by tab
> #row.names=1 => first column is row names
> y <- read.table("BGI_tissue.txt", header=T ,sep="\t", row.names=1)</pre>
> head(v)
                    Pt_X1 Pt_X2 Pt_X3 Pt_P1 Pt_P2 Pt_P3 Pt_L1 Pt_L2 Pt_L3 Pt_S1 Pt_S2 Pt_S3
                                                                9
                                                                       3
                                                                             5
POPTR_0001s00200.1
                       7
                               9
                                      7
                                           12
                                                   6
                                                          2
                                                                                   13
                                                                                          4
                                                                                                 3
                                     94
                                           96
                                                  82
POPTR 0001s00210.1 155 131
                                                         44
                                                               42
                                                                      93
                                                                            92
                                                                                 130
                                                                                         67
                                                                                                89
POPTR 0001s00220.1
                      104
                              57
                                     46
                                           4
                                                  15
                                                         0
                                                               19
                                                                     12
                                                                            20
                                                                                  13
                                                                                         12
                                                                                               13
                                      1
                                            0
                                                   0
                                                                0
                                                                      0
                                                                                  0
                                                                                          0
                                                                                                 0
POPTR 0001s00230.1
                       0
                               0
                                                         0
                                                                             0
                                                   1
                                                                1
                                                                       2
POPTR 0001s00240.1
                       39
                               0
                                      6
                                           58
                                                        12
                                                                             7
                                                                                 192
                                                                                         45
                                                                                                28
                                                                           994 2343 1145 1519
POPTR 0001s00250.1 7404 4088 5891 3312 3361 1317
                                                              417
                                                                     689
```

```
> #specify the group identifier into object "group"
> #rep(1:4,each=3) = 1,1,1,2,2,2,3,3,3,4,4,4
> group <- rep(1:4,each=3)
> group
 [1] 1 1 1 2 2 2 3 3 3 4 4 4
> #put rawcount and group into the edgeR format
> tis <- DGEList(count = y, group = group)</pre>
> # Calculate Normalization Factor using TMM by Robinson MD,
> # Oshlack A (2010). Genome Biology 11, R25.
> tis <- calcNormFactors(tis,method="TMM")</pre>
> tis
An object of class "DGEList"
$counts
                   Pt_X1 Pt_X2 Pt_X3 Pt_P1 Pt_P2 Pt_P3 Pt_L1 Pt_L2 Pt_L3 Pt_S1 Pt_S2 Pt_S3
POPTR_0001s00200.1
                       7
                             9
                                   7
                                        12
                                                6
                                                      2
                                                            9
                                                                  3
                                                                         5
                                                                             13
                                                                                     4
                                                                                           3
                     155
                           131
                                   94
                                         96
                                               82
                                                     44
                                                           42
                                                                 93
                                                                       92
                                                                            130
                                                                                    67
                                                                                          89
POPTR_0001s00210.1
POPTR_0001s00220.1
                     104
                            57
                                  46
                                         4
                                               15
                                                     0
                                                           19
                                                                 12
                                                                       20
                                                                             13
                                                                                    12
                                                                                          13
                                                           0
                                                                  0
POPTR_0001s00230.1
                      0
                             0
                                   1
                                         0
                                                0
                                                     0
                                                                        0
                                                                              0
                                                                                     0
                                                                                           0
                                                                  2
                                                                        7
                      39
                             0
                                    6
                                         58
                                                1
                                                     12
                                                            1
                                                                            192
                                                                                    45
                                                                                          28
POPTR 0001s00240.1
45028 more rows ...
$samples
      group lib.size norm.factors
Pt X1
          1 23215783
                         1.030617
          1 16455445
Pt X2
                         1.071571
Pt_X3
          1 14644964
                         1.100784
Pt_P1
                         1.259262
          2 14200511
Pt_P2
          2 14935270
                         1.251318
7 more rows ...
> tis$samples
      group lib.size norm.factors
Pt_X1
          1 23215783
                        1.0306175
Pt X2
          1 16455445
                        1.0715715
Pt X3
          1 14644964
                        1.1007844
Pt_P1
          2 14200511
                        1.2592618
Pt_P2
          2 14935270
                        1.2513180
Pt_P3
          2 12363172
                        0.6896963
Pt_L1
          3 16830260
                        0.7132996
                        0.7951466
Pt_L2
          3 19568204
Pt_L3
          3 20417321
                        0.8153829
Pt_S1
          4 20321791
                        1.2454369
Pt_S2
          4 10827664
                        1.1617584
Pt_S3
          4 12109146
                        1.1311473
```

>

```
> #calculate normalize count using function cpm (count per million)
> nc.tis <- cpm(tis, normalized.lib.sizes=TRUE)</pre>
> #write the normalize count into file "nc_tissue.csv"
> write.csv(nc.tis, file = "nc_tissue.csv")
> head(nc.tis)
                         Pt_X1
                                     Pt_X2
                                                  Pt_X3
                                                              Pt_P1
                                                                           Pt_P2
                                                                                       Pt_P3
                                                                                                  Pt_L1
                                                                                                             Pt L2
POPTR_0001s00200.1
                     0.2925615
                                 0.5104013
                                             0.43421764
                                                          0.6710598
                                                                      0.32104839
                                                                                   0.2345536 0.7496865 0.1928071
                                                                      4.38766133
POPTR_0001s00210.1
                     6.4781480
                               7.4291739
                                             5.83092263
                                                         5.3684786
                                                                                   5.1601801 3.4985369
                                                                                                         5.9770212
POPTR_0001s00220.1
                   4.3466283
                               3.2325413
                                             2.85343022
                                                        0.2236866
                                                                      0.80262098
                                                                                   0.0000000 1.5826715 0.7712285
POPTR_0001s00230.1
                     0.0000000
                                 0.0000000
                                             0.06203109
                                                          0.0000000
                                                                      0.00000000
                                                                                   0.0000000 0.0000000
                                                                                                         0.0000000
                                             0.37218655
POPTR_0001s00240.1
                     1.6299856
                               0.0000000
                                                          3.2434558
                                                                      0.05350807
                                                                                   1.4073218 0.0832985
                                                                                                        0.1285381
POPTR_0001s00250.1 309.4465019 231.8355950 365.42516161 185.2125127 179.84060657 154.4535715 34.7354738 44.2813718
                        Pt_L3
                                   Pt_S1
                                              Pt_S2
                                                          Pt_S3
POPTR_0001s00200.1 0.3003376 0.5136409 0.3179870
                                                      0.2190224
POPTR_0001s00210.1 5.5262112 5.1364095 5.3262827
                                                      6.4976654
POPTR_0001s00220.1 1.2013503 0.5136409 0.9539611
                                                      0.9490972
POPTR_0001s00230.1 0.0000000 0.0000000 0.0000000
                                                      0.0000000
POPTR_0001s00240.1 0.4204726 7.5860817
                                        3.5773541
                                                      2.0442094
POPTR_0001s00250.1 59.7071077 92.5739032 91.0237864 110.8983573
> #estimate the common dispersion to get overall degree of inter-library variability in the data
> tis <- estimateCommonDisp(tis,verbose=TRUE)</pre>
Disp = 0.08324 , BCV = 0.2885
> #estimate the tagwise dispersion
> tis <- estimateTagwiseDisp(tis)</pre>
> #check the relationship between sample by plot multi dimension scaling
> plotMDS(tis. method="bcv")
>
```

Plot MDS show 3 clusters of different tissues


```
> d_lf_xy <- exactTest(tis,pair=c("3","1"))</pre>
> d_1f_xv
An object of class "DGEExact"
$table
                         loafc
                                   100CPM
                                                PValue
POPTR 0001s00200.1 0.03230106 -0.9374979 1.000000000
POPTR 0001s00210.1 0.38686578 2.5076883 0.186018361
POPTR 0001s00220.1 1.56321759 0.7109259 0.002781238
POPTR 0001s00230.1 1.77311261 -2.9891833 1.000000000
POPTR 0001s00240.1 1.61899419 0.9354239 0.181550504
45028 more rows ...
$comparison
[1] "3" "1"
$genes
NULL
> toptag_lf_xy <- topTags(d_lf_xy, n=Inf)</pre>
> head(toptag_lf_xy$table)
                                               PValue
                        logFC
                                logCPM
                                                                FDR
POPTR_0007s13720.1 8.505188 8.548637 4.839798e-112 2.179506e-107
POPTR 0006s06010.1 -9.919535 3.994338 5.785553e-101 1.302704e-96
POPTR_0016s14310.1 -7.672346 7.401097 6.341108e-100 9.518637e-96
POPTR_0001s26630.1 -8.758553 5.693328 1.887435e-97 2.124921e-93
POPTR_0001s02770.1 -8.131885 6.120178 4.592215e-97 4.136024e-93
POPTR 0016s05780.1 -8.702961 5.658648 1.753710e-95 1.316247e-91
>
> toptag_lf_xy <- toptag_lf_xy$table[order(rownames(toptag_lf_xy$table)),]</pre>
> head(toptag_lf_xy)
                       logFC
                                 100CPM
                                             PValue
                                                             FDR
POPTR_0001s00200.1 0.03230106 -0.9374979 1.000000e+00 1.000000e+00
POPTR_0001s00210.1 0.38686578 2.5076883 1.860184e-01 3.040310e-01
POPTR_0001s00220.1 1.56321759 0.7109259 2.781238e-03 6.946147e-03
POPTR_0001s00230.1 1.77311261 -2.9891833 1.000000e+00 1.000000e+00
POPTR_0001s00240.1 1.61899419 0.9354239 1.815505e-01 2.978529e-01
POPTR_0001s00250.1 2.70719027 7.2774809 1.332564e-18 1.347012e-17
> write.table(toptag_lf_xy, file = "FC_lf_xy.txt", sep = "\t", col.names=NA)
>
```

Interpret the result

	logFC		logCPM	PValue	FDR
POPTR_0001s00200.1		0.03	-0.94	1.00	1.00
POPTR_0001s00210.1		0.39	2.51	0.19	0.30
POPTR_0001s00220.1		1.56	0.71	0.00	0.01
POPTR_0001s00230.1		1.77	-2.99	1.00	1.00
POPTR 0001s00240.1		1.62	0.94	0.18	0.30

- LogFC = log base 2 of expression xylem compare to leaf (+ expression in xylem more than leaf, - expression in xylem less than leaf)
- LogCPM = log base 2 of average expression from all samples
- Pvalue = P value associate with Log FC (ignore because multiple testing)
- FDR = corrected P value for multiple testing

Using Pop's pipes sys.bio.mtu.edu/deg.php

← -	→ C	2	sys.bio.mtu.	edu/deg.php						र्द्र (
Арр	os 🖸	🕽 แม้ในร	เริ้งแรก! แทรก	8+ + Sermsawat	Yumeiro Patissiere e	🕅 NCDOT : กองยาร	เยนต์ 🦳 นำเข้าจาก Sa	fari 🏾 🕖 Khan Acad	emy	» 📋 Other book
				DEGs Pathway E	D <i>es:Poplar</i> Enrichment Domain I					
V	Nelco	me stu	lav	To logou	it Click here!					

Identification of Differentially Expressed Genes(DEGs)

1. Select data platform type:

۲

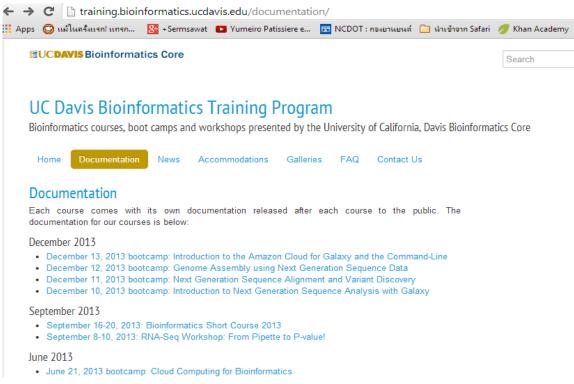
RNA-seq 🔻

1.1 Select RNA-seq normalization Methond (RNA-seq only)

edgeR

Input file : tab delimited and specify control as C and treatment as T

																			Original label not
	Pt_X1	Pt_X2	Pt_X3	Pt_P1	Pt_P2	Pt_P3	Pt_X1	Pt_X2	Pt_X3	Pt_L1	Pt_L2	Pt_L3	Pt_X1	Pt_X2	Pt_X3	Pt_S1	Pt_S2	Pt_S3	include
gene	С	С	С	T1	T1	T1	С	С	C	T2	T2	T2	C	С	C	Т3	Т3	Т3	
Potri.001G000100.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	in the
Potri.001G000200.1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	input
Potri.001G000300.1	301	181	240	246	133	98	301	181	240	66	59	94	301	181	240	142	153	183	file
Potri.001G000400.1	451	258	309	293	184	117	451	258	309	99	85	118	451	258	309	222	214	278	
Potri.001G000400.2	725	482	516	469	296	205	725	482	516	152	140	205	725	482	516	371	332	546	
Potri.001G000400.3	644	425	447	425	268	169	644	425	447	127	124	165	644	425	447	319	285	484	
Potri.001G000400.4	643	425	446	423	268	169	643	425	446	126	124	164	643	425	446	318	285	481	
Potri.001G000500.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	1	0	
Potri.001G000600.1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	3	0	0	
Potri.001G000700.1	1246	888	839	472	642	225	1246	888	839	358	495	590	1246	888	839	962	593	1136	
Potri.001G000700.2	1246	888	839	472	642	225	1246	888	839	358	495	590	1246	888	839	962	593	1136	
Potri.001G000800.1	383	183	144	4	5	C	383	183	144	25	49	43	383	183	144	384	74	446	
Potri.001G000900.1	3664	2513	2578	2457	2130	1184	3664	2513	2578	1397	1400	1908	3664	2513	2578	2142	1898	1941	
Potri.001G000900.2	3781	2588	2651	2515	2208	1227	3781	2588	2651	1460	1465	1997	3781	2588	2651	2257	2000	2037	
Potri.001G000900.3	3781	2588	2651	2515	2208	1227	3781	2588	2651	1460	1465	1997	3781	2588	2651	2257	2000	2037	
Potri.001G000900.4	3781	2588	2651	2515	2208	1227	3781	2588	2651	1460	1465	1997	3781	2588	2651	2257	2000	2037	
Potri.001G000900.5	3781	2588	2651	2515	2208	1227	3781	2588	2651	1460	1465	1997	3781	2588	2651	2257	2000	2037	
Potri.001G000900.6	3781	2588	2651	2515	2208	1227	3781	2588	2651	1460	1465	1997	3781	2588	2651	2257	2000	2037	
Potri.001G001000.1	0	0	0	0	0	0	0	0	0	22	32	63	0	0	0	1	4	0	


1 group of testing

Example of output file

GeneID	Treat_1_FC	Treat_1_pvalue	Treat_1_corrected pvalue(FDR)	DEG/nonDEG	Treat_2_FC	Treat_2_pval	Treat_2_corre
Potri.001G000100.1	0	1	1	nonDEG	0	1	1
Potri.001G000200.1	2.052966579	1	1	nonDEG	2.053572251	1	1
Potri.001G000300.1	-0.108360834	0.721937035	0.905099598	nonDEG	-1.24673887	4.43E-05	0.000131252
Potri.001G000400.1	-0.283314192	0.284932071	0.446710298	nonDEG	-1.25342151	8.28E-06	2.67E-05
Potri.001G000400.2	-0.324675777	0.208482818	0.348368372	nonDEG	-1.31037424	3.54E-07	1.33E-06
Potri.001G000400.3	-0.326804745	0.197965959	0.333358439	nonDEG	-1.37923567	6.98E-08	2.82E-07
Potri.001G000400.4	-0.327745289	0.195890129	0.330350526	nonDEG	-1.38456141	5.67E-08	2.31E-07
Potri.001G000500.1	0	1	1	nonDEG	0	1	1
Potri.001G000600.1	2.052966154	1	1	nonDEG	0	1	1
Potri.001G000700.1	-0.708800106	0.004397051	0.012765594	DEG	-0.57864149	0.017918689	0.034947571
Potri.001G000700.2	-0.708800191	0.004397867	0.012767455	DEG	-0.57864151	0.017920713	0.034949743
Potri.001G000800.1	-5.752295209	2.38E-32	1.19E-30	DEG	-2.07992598	3.60E-09	1.62E-08
Potri.001G000900.1	-0.106881527	0.677556136	0.863795048	nonDEG	-0.41485103	0.101230866	0.164720403
Potri.001G000900.2	-0.104177162	0.685100088	0.871321938	nonDEG	-0.39259678	0.12091177	0.192568953
Potri.001G000900.3	-0.104177155	0.685102882	0.871321938	nonDEG	-0.39259677	0.120918522	0.192575506
Potri.001G000900.4	-0.104177148	0.685105676	0.871321938	nonDEG	-0.39259677	0.120922395	0.192577474
Potri.001G000900.5	-0.104177141	0.685108471	0.871321938	nonDEG	-0.39259677	0.120926269	0.192579442
Potri.001G000900.6	-0.104177115	0.685118985	0.871321938	nonDEG	-0.39259676	0.12093309	0.192586104
Potri.001G001000.1	0	1	1	nonDEG	8.505002191	3.24E-16	2.35E-15
Potri.001G001100.1	2.856774447	0.51868682	0.711384175	nonDEG	7.42116742	1.57E-08	6.73E-08
Potri.001G001200.1	-4.268697283	0.026628012	0.061597157	nonDEG	-1.37868029	0.400219166	0.539694185
Potri.001G001200.2	-4.268697953	0.026625436	0.06159315	nonDEG	-1.37867193	0.400259753	0.539738949
Potri.001G001300.1	0.811016005	0.000942132	0.003226901	DEG	0.165737878	0.51788279	0.663092314

Good resource

http://training.bioinformatics.ucdavis.edu/documentation/

Question and answer